A Simple Frequency-domain Tuning Method of Fractional-order PID Controllers for Fractional-order Delay Systems

被引:7
|
作者
Li, Xu [1 ,2 ]
Gao, Lifu [1 ]
机构
[1] Chinese Acad Sci, Hefei Inst Phys Sci, Inst Intelligent Machines, 350 Shushan Rd, Hefei 230031, Peoples R China
[2] Univ Sci & Technol China, 96 JinZhai Rd, Hefei 230026, Peoples R China
关键词
FOPID controller; fractional-order systems; frequency-domain specifications; time delay; DESIGN; MODEL;
D O I
10.1007/s12555-021-0206-x
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The fractional-order proportional-integral-derivative (FOPID) controller is an improvement over the traditional PID controller. However, most existing methods of FOPID controller design are complex and not suitable for practical application. This paper presents a simple and efficient design method of FOPID controllers for fractional-order controlled plants with time delays. The method is based on four frequency-domain specifications-namely, gain crossover frequency, phase margin, phase crossover frequency and gain margin. The implicit nonlinear equations related to the controller parameters are formulated using these specifications. To simplify the mathematical calculation, the explicit equations of the controller parameters are analytically derived. Then, the FOPID controller parameters can be adjusted in a graphical manner. Two fractional-order plus time-delay plants are considered as simulation examples. The results show that the design requirements are successfully met and superior control performance is obtained via the proposed tuning method.
引用
收藏
页码:2159 / 2168
页数:10
相关论文
共 50 条
  • [31] Identification and PID Control for a Class of Delay Fractional-order Systems
    Nie, Zhuoyun
    Wang, Qingguo
    Liu, Ruijuan
    Lan, Yonghong
    [J]. IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2016, 3 (04) : 463 - 476
  • [32] Robust stabilization of interval fractional-order plants with one time-delay by fractional-order controllers
    Gao, Zhe
    [J]. JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2017, 354 (02): : 767 - 786
  • [33] Design of Functional Fractional-Order Observers for Linear Time-Delay Fractional-Order Systems in the Time Domain
    Boukal, Y.
    Darouach, M.
    Zasadzinski, M.
    Radhy, N. E.
    [J]. 2014 INTERNATIONAL CONFERENCE ON FRACTIONAL DIFFERENTIATION AND ITS APPLICATIONS (ICFDA), 2014,
  • [34] Stabilization using fractional-order PI and PID controllers
    Hamamci, Serdar E.
    [J]. NONLINEAR DYNAMICS, 2008, 51 (1-2) : 329 - 343
  • [35] Fractional-Order PID Controllers for Temperature Control: A Review
    Jamil, Adeel Ahmad
    Tu, Wen Fu
    Ali, Syed Wajhat
    Terriche, Yacine
    Guerrero, Josep M.
    [J]. ENERGIES, 2022, 15 (10)
  • [36] Determination of All Stabilizing Fractional-Order PID Controllers
    Lee, Yung K.
    Watkins, John M.
    [J]. 2011 AMERICAN CONTROL CONFERENCE, 2011, : 5007 - 5012
  • [37] On the fragility of fractional-order PID controllers for FOPDT processes
    Padula, Fabrizio
    Visioli, Antonio
    [J]. ISA TRANSACTIONS, 2016, 60 : 228 - 243
  • [38] On the fragility of fractional-order PID controllers for IPDT processes
    Padula, Fabrizio
    Visioli, Antonio
    [J]. 2017 25TH MEDITERRANEAN CONFERENCE ON CONTROL AND AUTOMATION (MED), 2017, : 870 - 875
  • [39] On the Use of Fractional-Order PID Controllers for TITO Processes
    Arrieta, Orlando
    Barbieri, Alessandro
    Meneses, Helber
    Padula, Fabrizio
    Vilanova, Ramon
    Visioli, Antonio
    [J]. IFAC PAPERSONLINE, 2023, 56 (02): : 3284 - 3289
  • [40] Variable-, Fractional-Order Discrete PID Controllers
    Ostalczyk, Piotr
    [J]. 2012 17TH INTERNATIONAL CONFERENCE ON METHODS AND MODELS IN AUTOMATION AND ROBOTICS (MMAR), 2012, : 534 - 539