Compressing spatio-temporal trajectories

被引:0
|
作者
Gudmundsson, Joachim [1 ]
Katajainen, Jyrki [2 ,5 ]
Merrick, Damian [1 ,3 ]
Ong, Cahya [4 ]
Wolle, Thomas [1 ]
机构
[1] NICTA, Sydney, NSW, Australia
[2] Univ Copenhagen, Dept Comp, DK-2100 Copenhagen, Denmark
[3] Univ Sydney, Sch Informat Technol, Sydney, NSW NSW-2006, Australia
[4] Univ New South Wales, Sch Engn & Comp Sci, Sydney, NSW 2052, Australia
[5] NICTA, Sydney, NSW, Australia
来源
ALGORITHMS AND COMPUTATION | 2007年 / 4835卷
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Trajectory data is becoming increasingly available and the size of the trajectories is getting larger. In this paper we study the problem of compressing spatio-temporal trajectories such that the most common queries can still be answered approximately after the compression step has taken place. In the process we develop an O(n log(k) n)-time implementation of the Douglas-Peucker algorithm in the case when the polygonal path of n vertices given as input is allowed to self-intersect.
引用
收藏
页码:763 / +
页数:3
相关论文
共 50 条
  • [21] Scalable Solution for the Anonymization of Big Data Spatio-Temporal Trajectories
    Eddine, Hajlaoui Jalel
    [J]. COMPUTATIONAL SCIENCE AND ITS APPLICATIONS, ICCSA 2022, PT I, 2022, 13375 : 465 - 476
  • [22] Statistical properties of trajectories of friendly walkers on spatio-temporal plane
    Inui, N
    Katori, M
    [J]. JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2001, 70 (01) : 78 - 85
  • [23] A Novel Method for Groups Identification Based on Spatio-Temporal Trajectories
    Cai, Zhi
    Ji, Meilin
    Ren, Hongbing
    Mi, Qing
    Guo, Limin
    Ding, Zhiming
    [J]. SPATIAL DATA AND INTELLIGENCE, SPATIALDI 2022, 2022, 13614 : 264 - 280
  • [24] Classification of Spatio-Temporal Trajectories Based on Support Vector Machines
    Cuenca-Jara, Jesus
    Terroso-Saenz, Fernando
    Sanchez-Iborra, Ramon
    Skarmeta-Gomez, Antonio F.
    [J]. ADVANCES IN PRACTICAL APPLICATIONS OF AGENTS, MULTI-AGENT SYSTEMS, AND COMPLEXITY: THE PAAMS COLLECTION, 2018, 10978 : 140 - 151
  • [25] ANALYSIS OF SPATIO-TEMPORAL TRAFFIC PATTERNS BASED ON PEDESTRIAN TRAJECTORIES
    Busch, S.
    Schindler, T.
    Klinger, T.
    Brenner, C.
    [J]. XXIII ISPRS CONGRESS, COMMISSION II, 2016, 41 (B2): : 497 - 503
  • [26] Mining Medical Periodic Patterns from Spatio-Temporal Trajectories
    Zhang, Dongzhi
    Lee, Kyungmi
    Lee, Ickjai
    [J]. HEALTH INFORMATION SCIENCE (HIS 2018), 2018, 11148 : 123 - 133
  • [27] Distributed Anomaly Detection Algorithm for Spatio-Temporal Trajectories of Vehicles
    Lu, Liping
    Cheng, Hao
    Xiong, Shengwu
    Duan, Pengfei
    Xiao, Yuan
    [J]. 2017 15TH IEEE INTERNATIONAL SYMPOSIUM ON PARALLEL AND DISTRIBUTED PROCESSING WITH APPLICATIONS AND 2017 16TH IEEE INTERNATIONAL CONFERENCE ON UBIQUITOUS COMPUTING AND COMMUNICATIONS (ISPA/IUCC 2017), 2017, : 590 - 598
  • [28] Prediction and Classification of Motion Trajectories Using Spatio-Temporal NMF
    Eggert, Julian P.
    Hellbach, Sven
    Kolarow, Alexander
    Koerner, Edgar
    Gross, Horst-Michael
    [J]. KI 2009: ADVANCES IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2009, 5803 : 597 - +
  • [29] Spatio-temporal similarity analysis between trajectories on road networks
    Hwang, JR
    Kang, HY
    Li, KJ
    [J]. PERSPECTIVES IN CONCEPTUAL MODELING, 2005, 3770 : 280 - 289
  • [30] Urban population density estimation based on spatio-temporal trajectories
    Xue, Fei
    Cao, Yang
    Ding, Zhiming
    Tang, Hengliang
    Yang, Xi
    Chen, Lei
    Li, Juntao
    [J]. CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2020, 32 (14):