Scalable Solution for the Anonymization of Big Data Spatio-Temporal Trajectories

被引:0
|
作者
Eddine, Hajlaoui Jalel [1 ]
机构
[1] Lambda Lab, Paris, France
关键词
Big Data; Anonymization; Privacy;
D O I
10.1007/978-3-031-10522-7_32
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Regardless of the collection location, mobile traffic data contains information about many aspects of subscribers' lives, including their activities, interests, schedules, travel and preferences. It is precisely the ability to access such information on unprecedented scales that is of critical importance for studies in a wide variety of fields. However, access to such a rich source also raises concerns about potential infringements on the rights of mobile customers regarding their personal data: among other things, individuals can be identified, their movements can be modified, their movements can be tracked and their mobile stage fright can be monitored. As a result, regulators have been working on legislation to protect the privacy of mobile users. In this optic, we provide a scalable solution to anonymize Big Data Spatio-temporal Trajectories of mobile users.
引用
收藏
页码:465 / 476
页数:12
相关论文
共 50 条
  • [1] Linkage of Spatio-Temporal Data and Trajectories
    Karapiperis, Dimitrios
    Gkoulalas-Divanis, Aris
    Verykios, Vassilios S.
    [J]. 2019 5TH IEEE INTERNATIONAL SMART CITIES CONFERENCE (IEEE ISC2 2019), 2019, : 766 - 771
  • [2] A Scalable Architecture for Spatio-Temporal Range Queries over Big Location Data
    Cortes, Rudyar
    Marin, Olivier
    Bonnaire, Xavier
    Arantes, Luciana
    Sens, Pierre
    [J]. 2015 IEEE 14TH INTERNATIONAL SYMPOSIUM ON NETWORK COMPUTING AND APPLICATIONS (NCA), 2015, : 159 - 166
  • [3] Spatio-temporal de-anonymization attack on geolocated data
    Wang, Rong
    Xie, Wei
    Liao, Xuan
    Feng, Shiduo
    Bai, Kunpeng
    [J]. Harbin Gongcheng Daxue Xuebao/Journal of Harbin Engineering University, 2021, 42 (03): : 400 - 406
  • [4] Expanding ParaSQL for spatio-temporal (big) data
    Sugam Sharma
    Shashi Gadia
    [J]. The Journal of Supercomputing, 2019, 75 : 587 - 606
  • [5] Expanding ParaSQL for spatio-temporal (big) data
    Sharma, Sugam
    Gadia, Shashi
    [J]. JOURNAL OF SUPERCOMPUTING, 2019, 75 (02): : 587 - 606
  • [6] Cartography in the Age of Spatio-temporal Big Data
    [J]. 2017, SinoMaps Press (46):
  • [7] SEXTANT: A Computational Framework for Scalable and Efficient Correlation of Spatio-Temporal Trajectories
    Thompson, Brian
    Cedel, Dave
    Martin, Jeremy
    Snee, Kristen
    Cheung, Alex
    [J]. 2019 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2019, : 4138 - 4147
  • [8] Beast: Scalable Exploratory Analytics on Spatio-temporal Data
    Eldawy, Ahmed
    Hristidis, Vagelis
    Ghosh, Saheli
    Saeedan, Majid
    Sevim, Akil
    Siddique, A. B.
    Singla, Samriddhi
    Sivaram, Ganesh
    Vu, Tin
    Zhang, Yaming
    [J]. PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, CIKM 2021, 2021, : 3796 - 3807
  • [9] A Framework for Scalable Correlation of Spatio-temporal Event Data
    Hagedorn, Stefan
    Sattler, Kai-Uwe
    Gertz, Michael
    [J]. DATA SCIENCE, 2015, 9147 : 9 - 15
  • [10] Modeling Trajectories: A Spatio-Temporal Data Type Approach
    Frihida, Ali
    Zheni, Donia
    Ben Ghezala, Henda
    Claramunt, Christophe
    [J]. PROCEEDINGS OF THE 20TH INTERNATIONAL WORKSHOP ON DATABASE AND EXPERT SYSTEMS APPLICATION, 2009, : 447 - +