Characterization of compact support of Fourier transform for orthonormal wavelets of L2(Rd)

被引:1
|
作者
Zhang, ZH [1 ]
机构
[1] Univ Calif Davis, Dept Math, Davis, CA 95616 USA
关键词
orthonormal wavelets; multiresolution analysis; scaling function; compact support;
D O I
10.1007/s10114-004-0419-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let {psi(mu)} be an orthonormal wavelet of L-2(R-d) and the support of a whole of its Fourier transform be [GRAPHICS] Under the weakest condition that each vertical bar(psi) over cap (mu)vertical bar is continuous for omega is an element of partial derivative(Pi(d)(i=1) [A(i), D-i]), a characterization of the above support of a whole is given.
引用
收藏
页码:855 / 864
页数:10
相关论文
共 50 条
  • [31] A CHARACTERIZATION OF FOURIER-TRANSFORMS IN L2(R)
    NASR, AH
    [J]. APPLICABLE ANALYSIS, 1982, 13 (02) : 87 - 91
  • [32] Wavelets on irregular grids with arbitrary dilation matrices and frame atoms for L2 (Rd)
    Aldroubi, A
    Cabrelli, C
    Molter, UM
    [J]. APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2004, 17 (02) : 119 - 140
  • [33] Some remarks concerning the Fourier transform in the space L2(ℝn)
    V. A. Abilov
    F. V. Abilova
    M. K. Kerimov
    [J]. Computational Mathematics and Mathematical Physics, 2008, 48 : 2146 - 2153
  • [34] Some Remarks Concerning the Fourier Transform in the Space L2(Rn)
    Abilov, V. A.
    Abilova, F. V.
    Kerimov, M. K.
    [J]. COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2008, 48 (12) : 2146 - 2153
  • [35] Some Remarks Concerning the Fourier Transform in the Space L2(R)
    Abilov, V. A.
    Abilova, F. V.
    Kerimov, M. K.
    [J]. COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2008, 48 (06) : 885 - 891
  • [36] On estimates for the Fourier-Bessel integral transform in the space L2(ℝ+)
    V. A. Abilov
    F. V. Abilova
    M. K. Kerimov
    [J]. Computational Mathematics and Mathematical Physics, 2009, 49 : 1103 - 1110
  • [37] On the natural representation of S(Ω) into L2(Ρ(Ω)):: Discrete harmonics and Fourier transform
    Marco, JM
    Parcet, J
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 2002, 100 (01) : 153 - 175
  • [38] COMPLETENESS CRITERION OF ORTHONORMAL SYSTEMS IN L2
    CHAUVEHEID, P
    MARSAL, D
    HOLLAND, F
    KUIPERS, L
    LOSSERS, OP
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1975, 82 (07): : 770 - 770
  • [39] Spline wavelets in l2(Z)
    Dou, Xin
    Jia, Jianmei
    Liu, Youming
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 321 (01) : 59 - 74
  • [40] Characterization of wavelets associated with AB-MRA on L2 (Rn)
    Ahmad, Owais
    Bhat, M. Younus
    Sheikh, Neyaz A.
    [J]. ANNALS OF THE UNIVERSITY OF CRAIOVA-MATHEMATICS AND COMPUTER SCIENCE SERIES, 2021, 48 (02): : 293 - 306