Characterization of compact support of Fourier transform for orthonormal wavelets of L2(Rd)

被引:1
|
作者
Zhang, ZH [1 ]
机构
[1] Univ Calif Davis, Dept Math, Davis, CA 95616 USA
关键词
orthonormal wavelets; multiresolution analysis; scaling function; compact support;
D O I
10.1007/s10114-004-0419-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let {psi(mu)} be an orthonormal wavelet of L-2(R-d) and the support of a whole of its Fourier transform be [GRAPHICS] Under the weakest condition that each vertical bar(psi) over cap (mu)vertical bar is continuous for omega is an element of partial derivative(Pi(d)(i=1) [A(i), D-i]), a characterization of the above support of a whole is given.
引用
收藏
页码:855 / 864
页数:10
相关论文
共 50 条
  • [21] L2 ANALYTIC FOURIER-FEYNMAN TRANSFORM
    CAMERON, RH
    STORVICK, DA
    [J]. NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 23 (01): : A142 - A142
  • [22] On estimates for the Fourier transform in the space L2(Rn)
    Daher, Radouan
    El Hamma, Mohamed
    [J]. COMPTES RENDUS MATHEMATIQUE, 2014, 352 (03) : 235 - 240
  • [23] Gabor-like systems in L2(Rd) and extensions to wavelets
    Bagarello, F.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (33)
  • [24] Comparison theorem between Fourier transform and Fourier transform with compact support
    Huyghe, Christine
    [J]. JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX, 2013, 25 (01): : 79 - 97
  • [25] New Estimates for the Fourier Transform in the Space L2(Rn)
    El Hamma, Mohamed
    Daher, R.
    Djellab, N.
    Khalil, Ch
    [J]. BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2022, 40
  • [26] Fourier transform, L2 restriction theorem, and scaling.
    Iosevich, A
    [J]. BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 1999, 2B (02): : 383 - 387
  • [27] Some New Estimates of the Fourier Transform in L2(R)
    Abilov, V. A.
    Abilova, F. V.
    Kerimov, M. K.
    [J]. COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2013, 53 (09) : 1231 - 1238
  • [28] Some remarks concerning the Fourier transform in the space L2 (ℝ)
    V. A. Abilov
    F. V. Abilova
    M. K. Kerimov
    [J]. Computational Mathematics and Mathematical Physics, 2008, 48
  • [29] Multivariate FMRAs and FMRA frame wavelets for reducing subspaces of L2(Rd)
    Zhou, Feng-Ying
    Li, Yun-Zhang
    [J]. KYOTO JOURNAL OF MATHEMATICS, 2010, 50 (01) : 83 - 99
  • [30] Characterization and Connectivity of Generalized Filters in L2(Rd)
    Li, Zhongyan
    [J]. ACTA APPLICANDAE MATHEMATICAE, 2009, 107 (1-3) : 223 - 236