Ancilla-Free Quantum Error Correction Codes for Quantum Metrology

被引:60
|
作者
Layden, David [1 ,2 ]
Zhou, Sisi [3 ,4 ]
Cappellaro, Paola [1 ,2 ]
Jiang, Liang [3 ,4 ]
机构
[1] MIT, Res Lab Elect, Cambridge, MA 02139 USA
[2] MIT, Dept Nucl Sci & Engn, Cambridge, MA 02139 USA
[3] Yale Univ, Dept Appl Phys & Phys, New Haven, CT 06511 USA
[4] Yale Univ, Yale Quantum Inst, New Haven, CT 06511 USA
基金
美国国家科学基金会;
关键词
DECOHERENCE;
D O I
10.1103/PhysRevLett.122.040502
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum error correction has recently emerged as a tool to enhance quantum sensing under Markovian noise. It works by correcting errors in a sensor while letting a signal imprint on the logical state. This approach typically requires a specialized error-correcting code, as most existing codes correct away both the dominant errors and the signal. To date, however, few such specialized codes are known, among which most require noiseless, controllable ancillas. We show here that such ancillas are not needed when the signal Hamiltonian and the error operators commute, a common limiting type of decoherence in quantum sensors. We give a semidefinite program for finding optimal ancilla-free sensing codes in general, as well as closed-form codes for two common sensing scenarios: qubits undergoing dephasing, and a lossy bosonic mode. Finally, we analyze the sensitivity enhancement offered by the qubit code under arbitrary spatial noise correlations, beyond the ideal limit of orthogonal signal and noise operators.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Sparse-graph codes for quantum error correction
    MacKay, DJC
    Mitchison, G
    McFadden, PL
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2004, 50 (10) : 2315 - 2330
  • [42] Optimizing Quantum Error Correction Codes with Reinforcement Learning
    Nautrup, Hendrik Poulsen
    Delfosse, Nicolas
    Dunjko, Vedran
    Briegel, Hans J.
    Friis, Nicolai
    QUANTUM, 2019, 3 : 1 - 21
  • [43] Multilevel quantum error correction codes in transform domain
    Guo, Ying
    Huang, Dazu
    Zeng, Guihua
    Lee, Moon Ho
    ICNC 2007: THIRD INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION, VOL 4, PROCEEDINGS, 2007, : 594 - +
  • [44] The application of weight parity error correction in quantum codes
    Du, Chao
    Liu, Yiting
    Ma, Zhi
    QUANTUM INFORMATION PROCESSING, 2023, 22 (02)
  • [45] Tapestry of dualities in decohered quantum error correction codes
    Su, Kaixiang
    Yang, Zhou
    Jian, Chao-Ming
    PHYSICAL REVIEW B, 2024, 110 (08)
  • [46] Digital System Design for Quantum Error Correction Codes
    Khalifa, Othman O.
    Sharif, Nur Amirah bt
    Saeed, Rashid A.
    Abdel-Khalek, S.
    Alharbi, Abdulaziz N.
    Alkathiri, Ali A.
    CONTRAST MEDIA & MOLECULAR IMAGING, 2021, 2021
  • [47] Nested Quantum Error Correction Codes via Subgraphs
    Yuan Li
    Chunlei Ji
    Mantao Xu
    International Journal of Theoretical Physics, 2014, 53 : 390 - 396
  • [48] Quantum Lego: Building Quantum Error Correction Codes from Tensor Networks
    Cao, ChunJun
    Lackey, Brad
    PRX QUANTUM, 2022, 3 (02):
  • [49] Quantum Topological Error Correction Codes: The Classical-to-Quantum Isomorphism Perspective
    Chandra, Daryus
    Babar, Zunaira
    Hung Viet Nguyen
    Alanis, Dimitrios
    Botsinis, Panagiotis
    Ng, Soon Xin
    Hanzo, Lajos
    IEEE ACCESS, 2018, 6 : 13729 - 13757
  • [50] Quantum error avoiding codes verses quantum error correcting codes
    Duan, LM
    Guo, GC
    PHYSICS LETTERS A, 1999, 255 (4-6) : 209 - 212