Quantum Topological Error Correction Codes: The Classical-to-Quantum Isomorphism Perspective

被引:16
|
作者
Chandra, Daryus [1 ]
Babar, Zunaira [1 ]
Hung Viet Nguyen [1 ]
Alanis, Dimitrios [1 ]
Botsinis, Panagiotis [1 ]
Ng, Soon Xin [1 ]
Hanzo, Lajos [1 ]
机构
[1] Univ Southampton, Sch Elect & Comp Sci, Southampton SO17 1BJ, Hants, England
来源
IEEE ACCESS | 2018年 / 6卷
基金
英国工程与自然科学研究理事会; 欧洲研究理事会;
关键词
Quantum error correction codes; quantum stabilizer codes; quantum topological codes; lattice code; LDPC; MINIMUM DISTANCE; GRAPHS;
D O I
10.1109/ACCESS.2017.2784417
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We conceive and investigate the family of classical topological error correction codes (TECCs), which have the bits of a codeword arranged in a lattice structure. We then present the classical-to-quantum isomorphism to pave the way for constructing their quantum dual pairs, namely, the quantum TECCs (QTECCs). Finally, we characterize the performance of QTECCs in the face of the quantum depolarizing channel in terms of both the quantum-bit error rate (QBER) and fidelity. Specifically, from our simulation results, the threshold probability of the QBER curves for the color codes, rotated-surface codes, surface codes, and toric codes are given by 1.8 x 10(-2), 1.3 x 10(-2), 6.3 x 10(-2), and 6.8 x 10(-2), respectively. Furthermore, we also demonstrate that we can achieve the benefit of fidelity improvement at the minimum fidelity of 0.94, 0.97, and 0.99 by employing the 1/7-rate color code, the 1/9-rate rotated-surface code, and 1/13-rate surface code, respectively.
引用
收藏
页码:13729 / 13757
页数:29
相关论文
共 50 条
  • [1] Quantum error correction with fractal topological codes
    Dua, Arpit
    Jochym-O'Connor, Tomas
    Zhu, Guanyu
    QUANTUM, 2023, 7
  • [2] Homological error correction: Classical and quantum codes
    Bombin, H.
    Martin-Delgado, M. A.
    JOURNAL OF MATHEMATICAL PHYSICS, 2007, 48 (05)
  • [3] Parallelized quantum error correction with fracton topological codes
    Brown, Benjamin J.
    Williamson, Dominic J.
    PHYSICAL REVIEW RESEARCH, 2020, 2 (01):
  • [4] On the classical-to-quantum correspondence
    Rosen, G
    MATHEMATICAL INTELLIGENCER, 2005, 27 (03): : 4 - 4
  • [5] Topological graph states and quantum error-correction codes
    Liao, Pengcheng
    Sanders, Barry C.
    Feder, David L.
    PHYSICAL REVIEW A, 2022, 105 (04)
  • [6] Duality of Quantum and Classical Error Correction Codes: Design Principles and Examples
    Babar, Zunaira
    Chandra, Daryus
    Hung Viet Nguyen
    Botsinis, Panagiotis
    Alanis, Dimitrios
    Ng, Soon Xin
    Hanzo, Lajos
    IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, 2019, 21 (01): : 970 - 1010
  • [7] Quantum convolutional error correction codes
    Chau, HF
    QUANTUM COMPUTING AND QUANTUM COMMUNICATIONS, 1999, 1509 : 314 - 324
  • [8] Quantum multiplexing for error correction codes
    Lo Piparo, Nicolo
    Hanks, Michael
    Gravel, Claude
    Munro, William J.
    Nemoto, Kae
    2020 CONFERENCE ON LASERS AND ELECTRO-OPTICS PACIFIC RIM (CLEO-PR), 2020,
  • [9] Quantum Topological Error Correction Codes Are Capable of Improving the Performance of Clifford Gates
    Chandra, Daryus
    Babar, Zunaira
    Hung Viet Nguyen
    Alanis, Dimitrios
    Botsinis, Panagiotis
    Ng, Soon Xin
    Hanzo, Lajos
    IEEE ACCESS, 2019, 7 : 121501 - 121529
  • [10] Quantum Codes in Classical Communication: A Space-Time Block Code From Quantum Error Correction
    Cuvelier, Travis C.
    Lanham, S. Andrew
    La Cour, Brian R.
    Heath, Robert W., Jr.
    IEEE OPEN JOURNAL OF THE COMMUNICATIONS SOCIETY, 2021, 2 : 2383 - 2412