Symbolic dynamics analysis of chaotic time series with a driven frequency

被引:1
|
作者
Wu, ZB
机构
[1] Institute of Theoretical Physics, Academia Sinica, Beijing, 100080
来源
PHYSICAL REVIEW E | 1996年 / 53卷 / 02期
关键词
D O I
10.1103/PhysRevE.53.1446
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A simple method to determine a partition line from chaotic time series with a driven frequency is devised, so that the embedded strange attractor can be divided effectively by the partition line. After the determination of grammatical rules, symbolic dynamics is established from the chaotic time series. The symbolic dynamics provides a global systematics of unstable periodic orbits within the strange attractor. With the global property, the symbolic dynamics is applied to find unstable periodic orbits and predict the chaotic time series with finite accuracy and symbolic sequences with high accuracy.
引用
收藏
页码:1446 / 1452
页数:7
相关论文
共 50 条
  • [21] Symbolic cumulant calculations for frequency domain time series
    Smith, B
    Field, C
    STATISTICS AND COMPUTING, 2001, 11 (01) : 75 - 82
  • [22] Data-Driven Robot Gait Modeling via Symbolic Time Series Analysis
    Seto, Yusuke
    Takahashi, Noboru
    Jha, Devesh K.
    Virani, Nurali
    Ray, Asok
    2016 AMERICAN CONTROL CONFERENCE (ACC), 2016, : 3904 - 3909
  • [23] Construction of symbolic dynamics from experimental time series
    Mischaikow, K
    Mrozek, M
    Reiss, J
    Szymczak, A
    PHYSICAL REVIEW LETTERS, 1999, 82 (06) : 1144 - 1147
  • [24] Distances of time series components by means of symbolic dynamics
    Keller, K
    Wittfeld, K
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2004, 14 (02): : 693 - 703
  • [25] SYMBOLIC DYNAMICS FROM BIOLOGICAL TIME-SERIES
    DESTEXHE, A
    PHYSICS LETTERS A, 1990, 143 (08) : 373 - 378
  • [26] Chaotic analysis of traffic time series
    Shang, PJ
    Li, XW
    Kamae, S
    CHAOS SOLITONS & FRACTALS, 2005, 25 (01) : 121 - 128
  • [27] Topological analysis of chaotic time series
    Gilmore, R
    APPLICATIONS OF SOFT COMPUTING, 1997, 3165 : 243 - 257
  • [28] Wavelet analysis of chaotic time series
    Murguía, JS
    Campos-Cantón, E
    REVISTA MEXICANA DE FISICA, 2006, 52 (02) : 155 - 162
  • [29] REMARK ON METRIC ANALYSIS OF RECONSTRUCTED DYNAMICS FROM CHAOTIC TIME-SERIES
    WU, ZB
    PHYSICA D, 1995, 85 (04): : 485 - 495
  • [30] A Method of Modeling for Nonlinear Process Dynamics by Chaotic Time-Series Analysis
    Hanakuma, Y.
    Nakaya, K.
    Takeuchi, T.
    Sasaki, T.
    Kagaku Kogaku Ronbunshu, 22 (05):