REMARK ON METRIC ANALYSIS OF RECONSTRUCTED DYNAMICS FROM CHAOTIC TIME-SERIES

被引:15
|
作者
WU, ZB
机构
[1] Institute of Theoretical Physics, Academia Sinica, Beijing, 100080
来源
PHYSICA D | 1995年 / 85卷 / 04期
基金
中国国家自然科学基金;
关键词
D O I
10.1016/0167-2789(95)00180-C
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that, for finite chaotic time series, the embedding with the delay time which corresponds to a reconstructed phase diagram similar to the original one does not necessarily lead to a good convergence of the correlation dimension. Delay time influences the measures of reconstructed dynamics besides the geometries of reconstructed phase diagrams. Moreover, the plateau onset of correlation dimension and the maximal Lyapunov exponent can be produced by the low-dimensional embedding of the dynamics.
引用
收藏
页码:485 / 495
页数:11
相关论文
共 50 条
  • [1] SYMBOLIC DYNAMICS FROM CHAOTIC TIME-SERIES
    DESTEXHE, A
    NICOLIS, G
    NICOLIS, C
    [J]. MEASURES OF COMPLEXITY AND CHAOS, 1989, 208 : 339 - 343
  • [2] AN OPTIMAL METRIC FOR PREDICTING CHAOTIC TIME-SERIES
    TANAKA, N
    OKAMOTO, H
    NAITO, M
    [J]. JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & REVIEW PAPERS, 1995, 34 (01): : 388 - 394
  • [3] The analysis of chaotic time-series data
    Kostelich, EJ
    [J]. SYSTEMS & CONTROL LETTERS, 1997, 31 (05) : 313 - 319
  • [4] TIME-SERIES ANALYSIS OF CHAOTIC SIGNALS
    RABINOVITCH, A
    THIEBERGER, R
    [J]. PHYSICA D, 1987, 28 (03): : 409 - 415
  • [5] A method of modeling for nonlinear process dynamics by chaotic time-series analysis
    Hanakuma, Y
    Nakaya, K
    Takeuchi, T
    Sasaki, T
    Nakanishi, E
    [J]. KAGAKU KOGAKU RONBUNSHU, 1996, 22 (05) : 991 - 995
  • [6] Analysis of human ambulation as a chaotic time-series: with nonlinear dynamics tools
    Al Kouzbary, Mouaz
    Al Kouzbary, Hamza
    Liu, Jingjing
    Shasmin, Hanie Nadia
    Arifin, Nooranida
    Osman, Noor Azuan Abu
    [J]. COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING, 2024,
  • [7] FORECASTING A CHAOTIC TIME-SERIES USING AN IMPROVED METRIC FOR EMBEDDING SPACE
    MURRAY, DB
    [J]. PHYSICA D, 1993, 68 (3-4): : 318 - 325
  • [8] TOPOLOGICAL ANALYSIS AND SYNTHESIS OF CHAOTIC TIME-SERIES
    MINDLIN, GB
    GILMORE, R
    [J]. PHYSICA D, 1992, 58 (1-4): : 229 - 242
  • [9] Analysis of dynamics in chaotic neural network reservoirs: Time-series prediction tasks
    Fukuda, Keisuke
    Horio, Yoshihiko
    [J]. IEICE NONLINEAR THEORY AND ITS APPLICATIONS, 2021, 12 (04): : 639 - 661
  • [10] Reduced Fractal analysis of the multidimensional attractor reconstructed from chaotic time series
    Dailyudenko, VF
    [J]. COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2003, PT 1, PROCEEDINGS, 2003, 2667 : 921 - 926