Time-optimal solutions of Parallel navigation and Finsler geodesics

被引:11
|
作者
Rafie-Rad, M. [1 ]
机构
[1] Mazandaran Univ, Fac Sci, Dept Math, Babol Sar, Iran
关键词
Finsler geometry; Parallel navigation; Kinematics; Optimal control; Pontryagin maximum principle;
D O I
10.1016/j.nonrwa.2010.02.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A geometric approach to kinematics in control theory is illustrated. A non-linear control system is derived for the problem and the Pontryagin maximum principle is used to find the time-optimal trajectories of the Parallel navigation. It is proved that the time-optimal relative trajectories of the Parallel navigation are geodesics of a Finsler metric. It is notable that the approach has the advantages using feedback. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3809 / 3814
页数:6
相关论文
共 50 条
  • [41] ON SENSITIVITY OF TIME-OPTIMAL SYSTEMS
    KREINDLER, E
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1969, AC14 (05) : 578 - +
  • [42] Computations and time-optimal controls
    Kaya, CY
    Noakes, JL
    [J]. OPTIMAL CONTROL APPLICATIONS & METHODS, 1996, 17 (03): : 171 - 185
  • [43] Time-optimal unitary operations
    Carlini, Alberto
    Hosoya, Akio
    Koike, Tatsuhiko
    Okudaira, Yosuke
    [J]. PHYSICAL REVIEW A, 2007, 75 (04)
  • [44] Approximations to time-optimal boundary controls for weak generalized solutions of the wave equation
    Ivanov, D. A.
    Potapov, M. M.
    [J]. COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2017, 57 (04) : 607 - 625
  • [45] Relaxing Nonholonomic Constraints to Eliminate Chattering From Time-Optimal Control Solutions
    Bazzi, Salah
    Shammas, Elie
    Asmar, Daniel
    [J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2017, 2 (03): : 1817 - 1824
  • [46] Approximations to time-optimal boundary controls for weak generalized solutions of the wave equation
    D. A. Ivanov
    M. M. Potapov
    [J]. Computational Mathematics and Mathematical Physics, 2017, 57 : 607 - 625
  • [47] A Time-Optimal On-the-Fly Parallel Algorithm for Model Checking of Weak LTL Properties
    Barnat, Jiri
    Brim, Lubos
    Rockai, Petr
    [J]. FORMAL METHODS AND SOFTWARE ENGINEERING, PROCEEDINGS, 2009, 5885 : 407 - 425
  • [48] Time-Optimal Design for Multidimensional and Parallel Transmit Variable-Rate Selective Excitation
    Lee, Daeho
    Lustig, Michael
    Grissom, William A.
    Pauly, John M.
    [J]. MAGNETIC RESONANCE IN MEDICINE, 2009, 61 (06) : 1471 - 1479
  • [49] Way to get the time of time-optimal control
    [J]. Kongzhi Lilun Yu Yinyong/Control Theory and Applications, 2001, 18 (02):
  • [50] Time-optimal control of articulated mechanisms
    Galicki, M
    Witte, H
    [J]. ROBOT CONTROL 1997, VOLS 1 AND 2, 1998, : 283 - 287