Homogenization of carbon-nanotube brush electrodes

被引:1
|
作者
Park, Moongyu [1 ]
Cushman, John H. [1 ,2 ]
Mueterthies, Michael J. [3 ]
机构
[1] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA
[2] Purdue Univ, Dept Earth Atmospher & Planetary Sci, W Lafayette, IN 47907 USA
[3] Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA
关键词
Homogenization; Carbon nanotube; Supercapacitor; Finite volume method; Finite element method and porous media; HYBRID MIXTURE THEORY; SWELLING SYSTEMS; MULTISCALE;
D O I
10.1016/j.camwa.2019.08.022
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Carbon nanotube brushes (carbon nanotubes attached to a current collector) have been proposed for nanoscale electrodes. While the detailed molecular scale physics is important in its own right, often a more useful scale to examine electrode performances is the micro and meso scale continuum. The detailed structure of microscale material parameters results from statistical mechanics and will not be discussed here, rather we focus on the micro scale homogenization to the meso scale wherein material parameters result from a micro scale "cell" problem for a periodic lattice. We apply a matched asymptotic formulation to obtain the mesa scale field equations and material parameters. The finite element method (FEM) and finite volume method (FVM) are employed to solve the micro scale cell problem and the mesoscale field equations, respectively. Numerical results are presented for the electrical potential field and concentration of cations and anions. For a test case, it is observed that a doubling of the electrode area can create a ten-fold increase in the potential which has interesting implications for electrode design. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1177 / 1187
页数:11
相关论文
共 50 条
  • [41] Anisotropy of sheared carbon-nanotube suspensions
    Fry, D
    Langhorst, B
    Kim, H
    Grulke, E
    Wang, H
    Hobbie, EK
    [J]. PHYSICAL REVIEW LETTERS, 2005, 95 (03)
  • [42] Carbon-nanotube computer scaled up
    Franz Kreupl
    [J]. Nature, 2019, 572 : 588 - 589
  • [43] Intrinsic performance of carbon-nanotube transistors
    Nihey, F
    Hongo, H
    Ochiai, Y
    Yudasaka, M
    Iijima, S
    [J]. 2004: 7TH INTERNATIONAL CONFERENCE ON SOLID-STATE AND INTEGRATED CIRCUITS TECHNOLOGY, VOLS 1- 3, PROCEEDINGS, 2004, : 619 - 623
  • [44] CARBON-NANOTUBE GEOMETRIES AS OPTIMAL CONFIGURATIONS
    Mainini, E.
    Murakawa, H.
    Piovano, P.
    Stefanelli, U.
    [J]. MULTISCALE MODELING & SIMULATION, 2017, 15 (04): : 1448 - 1471
  • [45] Three Dimensional Carbon-Nanotube Polymers
    Zhao, Zhisheng
    Xu, Bo
    Wang, Li-Min
    Zhou, Xiang-Feng
    He, Julong
    Liu, Zhongyuan
    Wang, Hui-Tian
    Tian, Yongjun
    [J]. ACS NANO, 2011, 5 (09) : 7226 - 7234
  • [46] Carbon-Nanotube Formation Observed In Situ
    Steven Trohalaki
    [J]. MRS Bulletin, 2004, 29 : 303 - 304
  • [47] Quantum confinement in carbon-nanotube systems
    Chico, L.
    Jaskolski, W.
    Lopez-Sancho, M. P.
    Munoz, M. C.
    [J]. INTERNATIONAL JOURNAL OF NANOTECHNOLOGY, 2005, 2 (1-2) : 103 - 113
  • [48] Active-matrix and flexible liquid-crystal displays with carbon-nanotube pixel electrodes
    Schindler, Axel
    Schau, Philipp
    Fruehauf, Norbert
    [J]. JOURNAL OF THE SOCIETY FOR INFORMATION DISPLAY, 2009, 17 (10) : 853 - 860
  • [49] Fully-flexible supercapacitors using spray-deposited carbon-nanotube films as electrodes
    Lee, Churl Seung
    Bae, Joonho
    [J]. JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2013, 63 (11) : 2190 - 2193
  • [50] Three Electrodes Biosensor for Alcohol in Whole Blood Based on Multi-wall Carbon-nanotube
    Zhen Sheng-Hang
    Zheng Jun
    Zou Chao-Shi
    Wang Yan
    Zhu Yang
    Deng Shi-Xiong
    Xie Guo-Ming
    Wang Jian
    [J]. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY, 2010, 38 (03) : 389 - 392