Homogenization of carbon-nanotube brush electrodes

被引:1
|
作者
Park, Moongyu [1 ]
Cushman, John H. [1 ,2 ]
Mueterthies, Michael J. [3 ]
机构
[1] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA
[2] Purdue Univ, Dept Earth Atmospher & Planetary Sci, W Lafayette, IN 47907 USA
[3] Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA
关键词
Homogenization; Carbon nanotube; Supercapacitor; Finite volume method; Finite element method and porous media; HYBRID MIXTURE THEORY; SWELLING SYSTEMS; MULTISCALE;
D O I
10.1016/j.camwa.2019.08.022
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Carbon nanotube brushes (carbon nanotubes attached to a current collector) have been proposed for nanoscale electrodes. While the detailed molecular scale physics is important in its own right, often a more useful scale to examine electrode performances is the micro and meso scale continuum. The detailed structure of microscale material parameters results from statistical mechanics and will not be discussed here, rather we focus on the micro scale homogenization to the meso scale wherein material parameters result from a micro scale "cell" problem for a periodic lattice. We apply a matched asymptotic formulation to obtain the mesa scale field equations and material parameters. The finite element method (FEM) and finite volume method (FVM) are employed to solve the micro scale cell problem and the mesoscale field equations, respectively. Numerical results are presented for the electrical potential field and concentration of cations and anions. For a test case, it is observed that a doubling of the electrode area can create a ten-fold increase in the potential which has interesting implications for electrode design. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1177 / 1187
页数:11
相关论文
共 50 条
  • [31] Carbon-Nanotube Cathodes on Optical Fibers
    Wei, Xianqi
    Liu, Weihua
    Zhao, Dengchao
    Wang, Xiaoli
    Liu, Junhua
    Liu, Hongzhong
    Yang, Ke
    Qu, Tuo
    Li, Xin
    [J]. 2012 25TH INTERNATIONAL VACUUM NANOELECTRONICS CONFERENCE (IVNC), 2012, : 236 - 238
  • [32] Multifunctional carbon-nanotube cellular endoscopes
    Singhal, Riju
    Orynbayeva, Zulfiya
    Sundaram, Ramalingam Venkat Kalyana
    Niu, Jun Jie
    Bhattacharyya, Sayan
    Vitol, Elina A.
    Schrlau, Michael G.
    Papazoglou, Elisabeth S.
    Friedman, Gary
    Gogotsi, Yury
    [J]. NATURE NANOTECHNOLOGY, 2011, 6 (01) : 57 - 64
  • [33] Theory of a Carbon-Nanotube Polarization Switch
    Sasaki, Ken-ichi
    Tokura, Yasuhiro
    [J]. PHYSICAL REVIEW APPLIED, 2018, 9 (03):
  • [34] Magnetoresistance mechanisms in carbon-nanotube yarns
    Ghanbari, Reza
    Ghorbani, Shaban Reza
    Arabi, Hadi
    Foroughi, Javad
    [J]. SYNTHETIC METALS, 2018, 242 : 55 - 60
  • [35] Elastic Deformation of Carbon-Nanotube Nanorings
    Zheng, Meng
    Ke, Changhong
    [J]. SMALL, 2010, 6 (15) : 1647 - 1655
  • [36] Carbon-nanotube formation observed in situ
    Trohalaki, S
    [J]. MRS BULLETIN, 2004, 29 (05) : 303 - 304
  • [37] FINALLY, A FUNCTIONAL CARBON-NANOTUBE CPU
    Moore, Samuel K.
    [J]. IEEE SPECTRUM, 2019, 56 (10) : 8 - 9
  • [38] The carbon-nanotube computer has arrived
    Franz Kreupl
    [J]. Nature, 2013, 501 : 495 - 496
  • [39] Multifunctional carbon-nanotube cellular endoscopes
    Singhal R.
    Orynbayeva Z.
    Sundaram R.V.K.
    Niu J.J.
    Bhattacharyya S.
    Vitol E.A.
    Schrlau M.G.
    Papazoglou E.S.
    Friedman G.
    Gogotsi Y.
    [J]. Nature Nanotechnology, 2011, 6 (1) : 57 - 64
  • [40] Carbon-nanotube wiring gets real
    Patel-Predd, Prachi
    [J]. IEEE SPECTRUM, 2008, 45 (04) : 14 - 14