The first-principle studies of the crystal phase transitions: Fd3m-MgAl2O4→F4-3m-MgAl2O4

被引:4
|
作者
Zhang, Liang [1 ,2 ]
Ji, Guang-Fu [1 ]
Zhao, Feng [1 ]
Meng, Chuan-Min [1 ]
Wei, Dong-Qing [3 ,4 ]
机构
[1] China Acad Engn Phys, Sci & Technol Shock Wave & Detonat Phys Lab, Inst Fluid Phys, Mianyang 621900, Peoples R China
[2] Sichuan Univ, Coll Phys Sci & Technol, Chengdu 610065, Peoples R China
[3] Shanghai Jiao Tong Univ, Coll Life Sci & Biotechnol, Shanghai 200240, Peoples R China
[4] Beijing Inst Technol, State Key Lab Explos Sci & Technol, Beijing 100081, Peoples R China
基金
美国国家科学基金会;
关键词
The first-principle DFT; MgAl2O4; Phase transition; High pressure physics; Equation of states; MGAL2O4; SPINEL; SPACE-GROUP; ELECTRONIC-STRUCTURE; NEUTRON-DIFFRACTION; STATE; ELASTICITY; STABILITY; DISORDER; EQUATION; GPA;
D O I
10.1016/j.physb.2010.10.054
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Magnesium aluminum spinel (MgAl2O4) is a major constituent of the shallow upper mantle. It is of great geophysical importance to explore its physical properties under high pressure and temperature. The first-principle density functional theory (DFT) with the plane wave along with pseudopotential was employed to obtain the total energy for both Fd3m-MgAl2O4 and F4-3m-MgAl2O4, which was used to generate the Gibbs free energy as a function of temperature and pressure with the quasi-harmonic Debye model. It is found that the phase transition temperature from Fd3m-MgAl2O4 to F4-3m-MgAl2O4 is beyond 452.6 K in the pressure regime studied, which is consistent with the experiment. The phase transition temperature is related to pressure by a linear function, i.e. T=8.05P+452.6, which is the first equation of this kind to describe the phase transition Fd3m -> F4-3m. The elastic constants, equation of states and thermodynamic properties of Fd3m-MgAl2O4 are also reported in this paper to make a complete study. (C) 2010 Published by Elsevier B.V.
引用
收藏
页码:335 / 338
页数:4
相关论文
共 50 条
  • [31] Low-temperature heat capacities of MgAl2O4 and spinels of the MgCr2O4–MgAl2O4 solid solution
    Stephan Klemme
    Martin Ahrens
    Physics and Chemistry of Minerals, 2007, 34 : 59 - 72
  • [32] THE SYSTEM MGO-MGAL2O4
    ALPER, AM
    MCNALLY, RN
    RIBBE, PH
    DOMAN, RC
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1962, 45 (06) : 263 - 268
  • [33] Formation of ZnAl2O4 and MgAl2O4 spinel in Al2O3 by ion implantation
    White, CW
    Meldrum, A
    Sonder, E
    Budai, JD
    Zuhr, RA
    Withrow, SP
    Henderson, DO
    MICROSTRUCTURAL PROCESSES IN IRRADIATED MATERIALS, 1999, 540 : 219 - 224
  • [34] MGAL2O4 FIBERS AND PLATELETS
    BRATTON, RJ
    HO, SM
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1968, 51 (01) : 56 - &
  • [35] Formation of ZnAl2O4 and MgAl2O4 spinel in Al2O3 by ion implantation
    White, C.W.
    Meldrum, A.
    Sonder, E.
    Budai, J.D.
    Zuhr, R.A.
    Withrow, S.P.
    Henderson, D.O.
    Materials Research Society Symposium - Proceedings, 1999, 540 : 219 - 224
  • [36] MgAl2O4UltrafiltrationCeramicMembraneDerivedfromMg-AlDoubleAlkoxide
    张国昌
    陈运法
    吴振江
    谢裕生
    化工冶金, 2000, (03) : 225 - 230
  • [37] Synthesis of MgAl2O4 nanopowders
    Kuznetsov, S. V.
    Fedorov, P. P.
    Voronov, V. V.
    Osiko, V. V.
    INORGANIC MATERIALS, 2011, 47 (08) : 895 - 898
  • [38] Magnetism and magnetotransport in symmetry matched spinels: Fe3O4/MgAl2O4
    Gilks, D.
    Lari, L.
    Cai, Z.
    Cespedes, O.
    Gerber, A.
    Thompson, S.
    Ziemer, K.
    Lazarov, V. K.
    JOURNAL OF APPLIED PHYSICS, 2013, 113 (17)
  • [39] THE TOUGHNESS OF POLYCRYSTALLINE MGAL2O4
    SAKAI, M
    BRADT, RC
    KOBAYASHI, AS
    NIPPON SERAMIKKUSU KYOKAI GAKUJUTSU RONBUNSHI-JOURNAL OF THE CERAMIC SOCIETY OF JAPAN, 1988, 96 (05): : 525 - 531
  • [40] TRANSLUCENT SINTERED MGAL2O4
    BRATTON, RJ
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1974, 57 (07) : 283 - 286