Chiral solitons in generalized Korteweg-de Vries equations

被引:3
|
作者
Bazeia, D [1 ]
Moraes, F
机构
[1] MIT, Ctr Theoret Phys, Nucl Sci Lab, Cambridge, MA 02139 USA
[2] MIT, Dept Phys, Cambridge, MA 02139 USA
[3] Univ Fed Paraiba, Dept Fis, BR-58051970 Joao Pessoa, Paraiba, Brazil
[4] Univ Fed Pernambuco, Dept Fis, BR-50670901 Recife, PE, Brazil
关键词
D O I
10.1016/S0375-9601(98)00727-0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Generalizations of the Korteweg-de Vries equation are considered, and some explicit solutions are presented. There are situations where solutions engender the interesting property of being chiral, that is, of having velocity determined in terms of the parameters that define the generalized equation, with a definite sign. (C) 1998 Elsevier Science B.V.
引用
收藏
页码:450 / 454
页数:5
相关论文
共 50 条
  • [31] Existence and stability of solitary waves for the generalized Korteweg-de Vries equations
    Hong, Mingli
    [J]. BOUNDARY VALUE PROBLEMS, 2013, : 1 - 17
  • [32] On a hierarchy of nonlinearly dispersive generalized Korteweg-de Vries evolution equations
    Christov, Ivan C.
    [J]. PROCEEDINGS OF THE ESTONIAN ACADEMY OF SCIENCES, 2015, 64 (03) : 212 - 218
  • [33] Numerical Studies of the Fractional Korteweg-de Vries, Korteweg-de Vries-Burgers' and Burgers' Equations
    Khader, M. M.
    Saad, Khaled M.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES INDIA SECTION A-PHYSICAL SCIENCES, 2021, 91 (01) : 67 - 77
  • [34] Compactons in PT-symmetric generalized Korteweg-de Vries equations
    Bender, Carl M.
    Cooper, Fred
    Khare, Avinash
    Mihaila, Bogdan
    Saxena, Avadh
    [J]. PRAMANA-JOURNAL OF PHYSICS, 2009, 73 (02): : 375 - 385
  • [35] LARGE DATA WAVE OPERATOR FOR THE GENERALIZED KORTEWEG-DE VRIES EQUATIONS
    Cote, Raphael
    [J]. DIFFERENTIAL AND INTEGRAL EQUATIONS, 2006, 19 (02) : 163 - 188
  • [36] Solitons of the complex modified Korteweg-de Vries hierarchy
    Kudryashov, Nikolay A.
    [J]. CHAOS SOLITONS & FRACTALS, 2024, 184
  • [37] INVARIANCE OF THE GIBBS MEASURES FOR PERIODIC GENERALIZED KORTEWEG-DE VRIES EQUATIONS
    Chapouto, Andreia
    Kishimoto, Nobu
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 375 (12) : 8483 - 8528
  • [38] Existence and stability of solitary waves for the generalized Korteweg-de Vries equations
    Mingli Hong
    [J]. Boundary Value Problems, 2013
  • [39] Pullback attractors for generalized Korteweg-de Vries-Burgers equations
    Cung The Anh
    Tang Quoc Bao
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 388 (02) : 899 - 912
  • [40] Induced gap solitons of a Korteweg-de Vries system
    Zhou, LQ
    He, KF
    Huang, ZQ
    [J]. PHYSICAL REVIEW E, 1998, 58 (06): : 7974 - 7977