Chiral solitons in generalized Korteweg-de Vries equations

被引:3
|
作者
Bazeia, D [1 ]
Moraes, F
机构
[1] MIT, Ctr Theoret Phys, Nucl Sci Lab, Cambridge, MA 02139 USA
[2] MIT, Dept Phys, Cambridge, MA 02139 USA
[3] Univ Fed Paraiba, Dept Fis, BR-58051970 Joao Pessoa, Paraiba, Brazil
[4] Univ Fed Pernambuco, Dept Fis, BR-50670901 Recife, PE, Brazil
关键词
D O I
10.1016/S0375-9601(98)00727-0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Generalizations of the Korteweg-de Vries equation are considered, and some explicit solutions are presented. There are situations where solutions engender the interesting property of being chiral, that is, of having velocity determined in terms of the parameters that define the generalized equation, with a definite sign. (C) 1998 Elsevier Science B.V.
引用
收藏
页码:450 / 454
页数:5
相关论文
共 50 条
  • [1] Numerical solitons of generalized korteweg-de vries equations
    Han, Houde
    Xu, Zhenli
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2007, 186 (01) : 483 - 489
  • [2] Instability of solitons for the critical generalized Korteweg-de Vries equation
    Martel, Y
    Merle, F
    [J]. GEOMETRIC AND FUNCTIONAL ANALYSIS, 2001, 11 (01) : 74 - 123
  • [3] Dynamics of embedded solitons in the extended Korteweg-de Vries equations
    Yang, JK
    [J]. STUDIES IN APPLIED MATHEMATICS, 2001, 106 (03) : 337 - 365
  • [4] Helical solitons in vector modified Korteweg-de Vries equations
    Pelinovsky, Dmitry E.
    Stepanyants, Yury A.
    [J]. PHYSICS LETTERS A, 2018, 382 (44) : 3165 - 3171
  • [5] Spatial decay of multi-solitons of the generalized Korteweg-de Vries and nonlinear Schrodinger equations
    Cote, Raphael
    Friederich, Xavier
    [J]. MATHEMATISCHE ANNALEN, 2023, 387 (3-4) : 1163 - 1198
  • [6] Non dispersive solutions of the generalized Korteweg-de Vries equations are typically multi-solitons
    Friederich, Xavier
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2021, 38 (05): : 1525 - 1552
  • [7] A new analytic approach and its application to new generalized Korteweg-de Vries and modified Korteweg-de Vries equations
    Kumar, Sachin
    Malik, Sandeep
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (14) : 11709 - 11726
  • [8] Numerical inverse scattering for the Korteweg-de Vries and modified Korteweg-de Vries equations
    Trogdon, Thomas
    Olver, Sheehan
    Deconinck, Bernard
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2012, 241 (11) : 1003 - 1025
  • [9] Integrability of reductions of the discrete Korteweg-de Vries and potential Korteweg-de Vries equations
    Hone, A. N. W.
    van der Kamp, P. H.
    Quispel, G. R. W.
    Tran, D. T.
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2013, 469 (2154):
  • [10] The structure of algebraic solitons and compactons in the generalized Korteweg-de Vries equation
    Pelinovsky, Efim
    Talipova, Tatiana
    Soomere, Tarmo
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2021, 419