Dynamics of embedded solitons in the extended Korteweg-de Vries equations

被引:38
|
作者
Yang, JK [1 ]
机构
[1] Univ Vermont, Dept Math & Stat, Burlington, VT 05401 USA
关键词
D O I
10.1111/1467-9590.00169
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Embedded solitons are solitary waves residing inside the continuous spectrum of a wave system. They have been discovered in a wide array of physical situations recently. In this article, we present the first comprehensive theory on the dynamics of embedded solitons and nonlocal solitary waves in the framework of the perturbed fifth-order Korteweg-de Vries (KdV) hierarchy equation. Our method is based on the development of a soliton perturbation theory. By obtaining the analytical formula for the tail amplitudes of nonlocal solitary waves, we demonstrate the existence of single-hump embedded solitons for both Hamiltonian and non-Hamiltonian perturbations. These embedded solitons can be isolated (existing at a unique wave speed) or continuous (existing at all wave speeds). Under small wave speed limit, our results show that the tail amplitudes of nonlocal waves are exponentially small, and the product of the amplitude and cosine of the phase is a constant to leading order. This qualitatively reproduces the previous results on the fifth-order KdV equation obtained by exponential asymptotics techniques. We. further study the dynamics of embedded solitons and prove that, under Hamiltonian perturbations, a localized wave initially moving faster than the embedded soliton will asymptotically approach this embedded soliton, whereas a localized wave moving slower than the embedded soliton will decay into radiation. Thus, the embedded soliton is semistable. Under non-Hamiltonian perturbations, stable embedded solitons are found for the first time.
引用
收藏
页码:337 / 365
页数:29
相关论文
共 50 条
  • [1] Asymptotic solitons of the extended Korteweg-de Vries equation
    Marchant, TR
    [J]. PHYSICAL REVIEW E, 1999, 59 (03): : 3745 - 3748
  • [2] Chiral solitons in generalized Korteweg-de Vries equations
    Bazeia, D
    Moraes, F
    [J]. PHYSICS LETTERS A, 1998, 249 (5-6) : 450 - 454
  • [3] Numerical solitons of generalized korteweg-de vries equations
    Han, Houde
    Xu, Zhenli
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2007, 186 (01) : 483 - 489
  • [4] Interactions of breathers and solitons in the extended Korteweg-de Vries equation
    Chow, KW
    Grimshaw, RHJ
    Ding, E
    [J]. WAVE MOTION, 2005, 43 (02) : 158 - 166
  • [5] Solitons for a Forced Extended Korteweg-de Vries Equation with Variable Coefficients in Atmospheric Dynamics
    Li, Min
    Xiao, Jing-Hua
    Wang, Ming
    Wang, Yu-Feng
    Tian, Bo
    [J]. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2013, 68 (3-4): : 235 - 244
  • [6] Helical solitons in vector modified Korteweg-de Vries equations
    Pelinovsky, Dmitry E.
    Stepanyants, Yury A.
    [J]. PHYSICS LETTERS A, 2018, 382 (44) : 3165 - 3171
  • [7] On solitary-wave solutions for the coupled Korteweg-de Vries and modified Korteweg-de Vries equations and their dynamics
    Hong, WP
    [J]. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2006, 61 (3-4): : 125 - 132
  • [8] Numerical inverse scattering for the Korteweg-de Vries and modified Korteweg-de Vries equations
    Trogdon, Thomas
    Olver, Sheehan
    Deconinck, Bernard
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2012, 241 (11) : 1003 - 1025
  • [9] Integrability of reductions of the discrete Korteweg-de Vries and potential Korteweg-de Vries equations
    Hone, A. N. W.
    van der Kamp, P. H.
    Quispel, G. R. W.
    Tran, D. T.
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2013, 469 (2154):
  • [10] SOLITONS, KINKS AND SINGULAR SOLUTIONS OF COUPLED KORTEWEG-DE VRIES EQUATIONS
    Ahmed, Bouthina S.
    Biswas, Anjan
    [J]. PROCEEDINGS OF THE ROMANIAN ACADEMY SERIES A-MATHEMATICS PHYSICS TECHNICAL SCIENCES INFORMATION SCIENCE, 2013, 14 (02): : 111 - 120