Incorporation of Be dopant in GaAs core and core-shell nanowires by molecular beam epitaxy

被引:12
|
作者
Ojha, Sai Krishna [1 ]
Kasanaboina, Pavan Kumar [1 ]
Reynolds, Claude Lewis, Jr. [2 ]
Rawdanowicz, Thomas A. [2 ]
Liu, Yang [2 ]
White, Ryan M. [2 ]
Iyer, Shanthi [3 ]
机构
[1] N Carolina Agr & Tech State Univ, Dept Elect & Comp Engn, 1601 E Market St, Greensboro, NC 27411 USA
[2] N Carolina State Univ, Dept Mat Sci & Engn, 911 Partners Way Engn Bldg 1, Raleigh, NC 27606 USA
[3] N Carolina Agr & Tech State Univ, Dept Elect & Comp Engn Nanoengn, 1601 E Market St, Greensboro, NC 27411 USA
来源
关键词
VAPOR-PHASE EPITAXY; P-TYPE GAAS; GALLIUM-ARSENIDE; DIFFUSION; GROWTH; BERYLLIUM; MOBILITY; SI;
D O I
10.1116/1.4943600
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Effective implementation of doped nanowires (NWs) in nanoscaled devices requires controlled and effective dopant incorporation. The one dimensional configuration of NWs poses a challenge for efficient doping due to the large number of surface states pinning the Fermi level close to the middle of the band gap and thus creating a large depletion layer at the surface. This effectively reduces the effective volume for doping. However, the flexibility of different architectures offered by the NWs, in particular, the core-shell configuration along with different growth mechanisms associated with the core and shell can be strategically used for efficient doping. In this work, the authors report on a catalyst free Ga-assisted approach for the growth of Be-doped GaAs NWs by molecular beam epitaxy. A systematic and a comprehensive study is reported using a variety of characterization techniques to determine the impact of NW configuration, Be cell temperature, and V/III beam equivalent pressure (BEP) ratio individually on doping incorporation in the NWs. Broadening of the photoluminescence spectra in the 1.49-1.51 eV range, as well as the longitudinal optical mode of the corresponding Raman spectra in combination with its red shift that is considered as a signature of higher Be incorporation, was found to occur for the core-shell configuration. Further, a lower V/III BEP ratio has a strong impact on enhancing the dopant incorporation. (C) 2016 American Vacuum Society.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Crystal Phase Quantum Dots in the Ultrathin Core of GaAs-AlGaAs Core-Shell Nanowires
    Loitsch, Bernhard
    Winnerl, Julia
    Grimaldi, Gianluca
    Wierzbowski, Jakob
    Rudolph, Daniel
    Morkoetter, Stefanie
    Doeblinger, Markus
    Abstreiter, Gerhard
    Koblmueller, Gregor
    Finley, Jonathan J.
    [J]. NANO LETTERS, 2015, 15 (11) : 7544 - 7551
  • [42] Crystal Phase Selective Growth in GaAs/InAs Core-Shell Nanowires
    Rieger, Torsten
    Schaepers, Thomas
    Gruetzmacher, Detlev
    Lepsa, Mihail Ion
    [J]. CRYSTAL GROWTH & DESIGN, 2014, 14 (03) : 1167 - 1174
  • [43] Core-shell carrier and exciton transfer in GaAs/GaNAs coaxial nanowires
    Chen, Shula
    Jansson, Mattias
    Filippov, Stanislav
    Ishikawa, Fumitaro
    Chen, Weimin M.
    Buyanova, Irina A.
    [J]. JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2016, 34 (04):
  • [44] Terahertz Spectroscopy of Modulation Doped Core-Shell GaAs/AlGaAs Nanowires
    Boland, Jessica L.
    Conesa-Boj, Sonia
    Tutuncouglu, G.
    Matteini, F.
    Ruffer, D.
    Casadei, A.
    Gaveen, F.
    Amaduzzi, F.
    Parkinson, P.
    Davies, C.
    Joyce, H. J.
    Herz, L. M.
    Fontcuberta i Morral, A.
    Johnston, Michael B.
    [J]. 2015 40TH INTERNATIONAL CONFERENCE ON INFRARED, MILLIMETER AND TERAHERTZ WAVES (IRMMW-THZ), 2015,
  • [45] Suppression of alloy fluctuations in GaAs-AlGaAs core-shell nanowires
    Loitsch, Bernhard
    Jeon, Nari
    Doeblinger, Markus
    Winnerl, Julia
    Parzinger, Eric
    Matich, Sonja
    Wurstbauer, Ursula
    Riedl, Hubert
    Abstreiter, Gerhard
    Finley, Jonathan J.
    Lauhon, Lincoln J.
    Koblmueller, Gregor
    [J]. APPLIED PHYSICS LETTERS, 2016, 109 (09)
  • [46] Plastic and Elastic Strain Fields in GaAs/Si Core-Shell Nanowires
    Conesa-Boj, Sonia
    Boioli, Francesca
    Russo-Averchi, Eleonora
    Dunand, Sylvain
    Heiss, Martin
    Rueffer, Daniel
    Wyrsch, Nicolas
    Ballif, Christophe
    Miglio, Leo
    Fontcuberta i Morral, Anna
    [J]. NANO LETTERS, 2014, 14 (04) : 1859 - 1864
  • [47] Enhancement of radiation tolerance in GaAs/AlGaAs core-shell and InP nanowires
    Li, Fajun
    Xie, Xiaolong
    Gao, Qian
    Tan, Liying
    Zhou, Yanping
    Yang, Qingbo
    Ma, Jing
    Fu, Lan
    Tan, Hark Hoe
    Jagadish, Chennupati
    [J]. NANOTECHNOLOGY, 2018, 29 (22)
  • [48] Origin of negative magnetoresistance of GaAs/(Ga,Mn)As core-shell nanowires
    Butschkow, Christian
    Reiger, Elisabeth
    Rudolph, Andreas
    Geissler, Stefan
    Neumaier, Daniel
    Soda, Marcello
    Schuh, Dieter
    Woltersdorf, Georg
    Wegscheider, Werner
    Weiss, Dieter
    [J]. PHYSICAL REVIEW B, 2013, 87 (24)
  • [49] Core-Shell Structures Prepared by Atomic Layer Deposition on GaAs Nanowires
    Ursaki, Veaceslav V.
    Lehmann, Sebastian
    Zalamai, Victor V.
    Morari, Vadim
    Nielsch, Kornelius
    Tiginyanu, Ion M.
    Monaico, Eduard V.
    [J]. CRYSTALS, 2022, 12 (08)
  • [50] Radial composition variations in the shells of GaAs/AlGaAs core-shell nanowires
    Nilsen, J. S.
    Reinertsen, J. F.
    Mosberg, A.
    Fauske, V. T.
    Munshi, A. M.
    Dheeraj, D. L.
    Fimland, B. O.
    Weman, H.
    van Helvoort, A. T. J.
    [J]. ELECTRON MICROSCOPY AND ANALYSIS GROUP CONFERENCE (EMAG2015), 2015, 644