Plastic and Elastic Strain Fields in GaAs/Si Core-Shell Nanowires

被引:30
|
作者
Conesa-Boj, Sonia [1 ]
Boioli, Francesca [4 ,5 ]
Russo-Averchi, Eleonora [1 ]
Dunand, Sylvain [2 ]
Heiss, Martin [1 ]
Rueffer, Daniel [1 ]
Wyrsch, Nicolas [2 ]
Ballif, Christophe [2 ,3 ]
Miglio, Leo [4 ,5 ]
Fontcuberta i Morral, Anna [1 ]
机构
[1] Ecole Polytech Fed Lausanne, Lab Mat Semicond LMSC, CH-1015 Lausanne, Switzerland
[2] Ecole Polytech Fed Lausanne, Inst Microengn IMT, Photovolta & Thin Film Elect Lab, CH-1015 Lausanne, Switzerland
[3] Ctr Suisse Elect & Microtech CSEM, PV Ctr, CH-2000 Neuchatel, Switzerland
[4] Univ Milano Bicocca, L NESS, I-20125 Milan, Italy
[5] Univ Milano Bicocca, Dept Mat Sci, I-20125 Milan, Italy
基金
瑞士国家科学基金会;
关键词
Nanowires; GaAs; Si; molecular beam epitaxy (MBE); plasma enhanced chemical vapor deposition (PECVD); geometrical phase analysis (GPA) and finite element strain simulations; OPTICAL-PROPERTIES; SOLAR-CELLS; GROWTH; DISLOCATIONS; RELAXATION; ANISOTROPY; ARRAYS;
D O I
10.1021/nl4046312
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Thanks to their unique morphology, nanowires have enabled integration of materials in a way that was not possible before with thin film technology. In turn, this opens new avenues for applications in the areas of energy harvesting, electronics, and optoelectronics. This is particularly true for axial heterostructures, while core shell systems are limited by the appearance of strain-induced dislocations. Even more challenging is the detection and understanding of these defects. We combine geometrical phase analysis with finite element strain simulations to quantify and determine the origin of the lattice distortion in core shell nanowire structures. Such combination provides a powerful insight in the origin and characteristics of edge dislocations in such systems and quantifies their impact with the strain field map. We apply the method to heterostructures presenting single and mixed crystalline phase. Mixing crystalline phases along a nanowire turns out to be beneficial for reducing strain in mismatched core shell structures.
引用
收藏
页码:1859 / 1864
页数:6
相关论文
共 50 条
  • [1] Mapping of Strain Fields in GaAs/GaAsP Core-Shell Nanowires with Nanometer Resolution
    Jones, Eric J.
    Ermez, Sema
    Gradecak, Silvija
    [J]. NANO LETTERS, 2015, 15 (12) : 7873 - 7879
  • [2] Axial strain in GaAs/InAs core-shell nanowires
    Biermanns, Andreas
    Rieger, Torsten
    Bussone, Genziana
    Pietsch, Ullrich
    Gruetzmacher, Detlev
    Lepsa, Mihail Ion
    [J]. APPLIED PHYSICS LETTERS, 2013, 102 (04)
  • [3] In As/GaAs Core-Shell Nanowires
    Popovitz-Biro, Ronit
    Kretinin, Andrey
    Von Huth, Palle
    Shtrikman, Hadas
    [J]. CRYSTAL GROWTH & DESIGN, 2011, 11 (09) : 3858 - 3865
  • [4] Nanostructure and strain properties of core-shell GaAs/AlGaAs nanowires
    Kehagias, Th
    Florini, N.
    Kioseoglou, J.
    Pavloudis, Th
    Komninou, Ph
    Walther, T.
    Moratis, K.
    Hatzopoulos, Z.
    Pelekanos, N. T.
    [J]. SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2015, 30 (11)
  • [5] Strain in crystalline core-shell nanowires
    Ferrand, David
    Cibert, Joel
    [J]. EUROPEAN PHYSICAL JOURNAL-APPLIED PHYSICS, 2014, 67 (03):
  • [6] Strain in semiconductor core-shell nanowires
    Gronqvist, Johan
    Sondergaard, Niels
    Boxberg, Fredrik
    Guhr, Thomas
    Aberg, Sven
    Xu, H. Q.
    [J]. JOURNAL OF APPLIED PHYSICS, 2009, 106 (05)
  • [7] Strain engineering of band offsets in Si/Ge core-shell nanowires
    Huang, Shouting
    Yang, Li
    [J]. APPLIED PHYSICS LETTERS, 2011, 98 (09)
  • [8] Polytypism in GaAs/GaNAs core-shell nanowires
    Yukimune, M.
    Fujiwara, R.
    Mita, T.
    Ishikawa, F.
    [J]. NANOTECHNOLOGY, 2020, 31 (50)
  • [9] GaAs Core-Shell Nanowires for Photovoltaic Applications
    Czaban, Josef A.
    Thompson, David A.
    LaPierre, Ray R.
    [J]. NANO LETTERS, 2009, 9 (01) : 148 - 154
  • [10] Strain relaxation and ambipolar electrical transport in GaAs/InSb core-shell nanowires
    Rieger, Torsten
    Zellekens, Patrick
    Demarina, Natalia
    Al Hassan, Ali
    Hackemueller, Franz Josef
    Lueth, Hans
    Pietsch, Ullrich
    Schaepers, Thomas
    Gruetzmacher, Detlev
    Lepsa, Mihail Ion
    [J]. NANOSCALE, 2017, 9 (46) : 18392 - 18401