A universal Hamilton-Jacobi equation for second-order ODEs

被引:3
|
作者
Prince, GE [1 ]
Aldridge, JE [1 ]
Byrnes, GB [1 ]
机构
[1] La Trobe Univ, Dept Math, Bundoora, Vic 3083, Australia
来源
基金
美国国家卫生研究院;
关键词
D O I
10.1088/0305-4470/32/5/013
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A universal version of the Hamilton-Jacobi equation on R x TM arises from the Liouville-Arnol'd theorem for a completely integrable system on a finite-dimensional manifold M. We give necessary and sufficient conditions for such complete integrability to imply a canonical separability of both this universal Hamilton-Jacobi equation and its traditional counterpart. The geodesic case is particularly interesting. We show that these conditions also apply for systems of second-order ordinary differential equations (contact Bows) which are not Euler-Lagrange. The Kerr metric, the Toda lattice and a completely integrable contact flow are given as examples.
引用
收藏
页码:827 / 844
页数:18
相关论文
共 50 条