MEAN VIABILITY THEOREMS AND SECOND-ORDER HAMILTON-JACOBI EQUATIONS

被引:0
|
作者
Keller, Christian [1 ]
机构
[1] Univ Cent Florida, Dept Math, Orlando, FL 32816 USA
关键词
viability; stochastic control; path-dependent partial differential equations; contin- gent solutions; viscosity solutions; PATH-DEPENDENT PDES; STOCHASTIC TARGET PROBLEMS; VISCOSITY SOLUTIONS; OPTIMAL TRAJECTORIES; BELLMAN EQUATIONS; EXISTENCE; SETS;
D O I
10.1137/23M1550438
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We introduce the notion of mean viability for controlled stochastic differential equations and establish counterparts of Nagumo's classical viability theorems (necessary and sufficient conditions for mean viability). As an application, we provide a purely probabilistic proof of a comparison principle and of existence for contingent and viscosity solutions of second-order fully nonlinear path -dependent Hamilton-Jacobi-Bellman equations. We do not use compactness and optimal stopping arguments, which are usually employed in the literature on viscosity solutions for second-order path -dependent PDEs.
引用
收藏
页码:1615 / 1642
页数:28
相关论文
共 50 条
  • [1] Regular solutions of second-order stationary Hamilton-Jacobi equations
    Gozzi, F
    Rouy, E
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 1996, 130 (01) : 201 - 234
  • [2] Multiscale problems and homogenization for second-order Hamilton-Jacobi equations
    Alvarez, Olivier
    Bardi, Martino
    Marchi, Claudio
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 243 (02) : 349 - 387
  • [3] A universal Hamilton-Jacobi equation for second-order ODEs
    Prince, GE
    Aldridge, JE
    Byrnes, GB
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (05): : 827 - 844
  • [4] Second-order shape derivatives along normal trajectories, governed by Hamilton-Jacobi equations
    Allaire, G.
    Cances, E.
    Vie, J. -L.
    [J]. STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2016, 54 (05) : 1245 - 1266
  • [5] Second-order shape derivatives along normal trajectories, governed by Hamilton-Jacobi equations
    G. Allaire
    E. Cancès
    J.-L. Vié
    [J]. Structural and Multidisciplinary Optimization, 2016, 54 : 1245 - 1266
  • [6] Second order numerical methods for first order Hamilton-Jacobi equations
    Szpiro, A
    Dupuis, P
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 40 (03) : 1136 - 1183
  • [7] Hamilton-Jacobi treatment of constrained systems with second-order Lagrangians
    Rabei, EM
    Hasan, EH
    Ghassib, HB
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2004, 43 (04) : 1073 - 1096
  • [8] Hamilton-Jacobi formulation for singular systems with second-order Lagrangians
    Pimentel, BM
    Teixeira, RG
    [J]. NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1996, 111 (07): : 841 - 854
  • [9] Hamilton-Jacobi quantization of constrained systems with second-order Lagrangians
    Muslih, SI
    [J]. CZECHOSLOVAK JOURNAL OF PHYSICS, 2003, 53 (12) : 1163 - 1171
  • [10] A Second Order Central Scheme for Hamilton-Jacobi Equations on Triangular Grids
    Popov, Peter
    Popov, Bojan
    [J]. NUMERICAL ANALYSIS AND ITS APPLICATIONS: 4TH INTERNATIONAL CONFERENCE, NAA 2008, 2009, 5434 : 476 - +