Second order numerical methods for first order Hamilton-Jacobi equations

被引:13
|
作者
Szpiro, A
Dupuis, P
机构
[1] MIT, Lincoln Lab, Lexington, MA 02420 USA
[2] Brown Univ, Div Appl Math, Lefschetz Ctr Dynam Syst, Providence, RI 02912 USA
关键词
Hamilton-Jacobi equations; numerical approximation; second order convergence; asymptotic expansion; Markov chain approximation; finite difference approximation;
D O I
10.1137/S003614299935704X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
W present practical numerical methods which produce provably second order approximations for a class of stationary first order Hamilton-Jacobi partial differential equations. Using probabilistic methods, we derive high order asymptotic expansions for a first order method and then use those results to design second order methods. We prove second order convergence for the solution and for its gradient on a subset of the domain where the solution is smooth. Although we limit our attention to second order schemes, in principle the techniques in this paper can be extended to arbitrarily high order methods. Examples illustrate the rate of convergence as well as global sharp resolution of discontinuities. The Hamilton-Jacobi equations we consider correspond to deterministic optimal control problems, and our rate of convergence results are valid for the value functions and for the optimal feedback controls.
引用
收藏
页码:1136 / 1183
页数:48
相关论文
共 50 条
  • [1] On the numerical approximation of first-order Hamilton-Jacobi equations
    Abgrall, Remi
    Perrier, Vincent
    [J]. INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND COMPUTER SCIENCE, 2007, 17 (03) : 403 - 412
  • [2] Numerical discretization of boundary conditions for first order Hamilton-Jacobi equations
    Abgrall, R
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2003, 41 (06) : 2233 - 2261
  • [3] On a class of first order Hamilton-Jacobi equations in metric spaces
    Ambrosio, Luigi
    Feng, Jin
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 256 (07) : 2194 - 2245
  • [4] Regular solutions of second-order stationary Hamilton-Jacobi equations
    Gozzi, F
    Rouy, E
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 1996, 130 (01) : 201 - 234
  • [6] A Second Order Central Scheme for Hamilton-Jacobi Equations on Triangular Grids
    Popov, Peter
    Popov, Bojan
    [J]. NUMERICAL ANALYSIS AND ITS APPLICATIONS: 4TH INTERNATIONAL CONFERENCE, NAA 2008, 2009, 5434 : 476 - +
  • [7] Multiscale problems and homogenization for second-order Hamilton-Jacobi equations
    Alvarez, Olivier
    Bardi, Martino
    Marchi, Claudio
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 243 (02) : 349 - 387
  • [8] High order numerical discretization for Hamilton-Jacobi equations on triangular meshes
    Augoula S.
    Abgrall R.
    [J]. Journal of Scientific Computing, 2000, 15 (2) : 197 - 229
  • [9] Homogenization of Hamilton-Jacobi equations: Numerical methods
    Achdou, Yves
    Camilli, Fabio
    Dolcetta, Italo Capuzzo
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2008, 18 (07): : 1115 - 1143
  • [10] Discontinuous viscosity solutions of first-order Hamilton-Jacobi equations
    Bertsch, Michiel
    Smarrazzo, Flavia
    Terracina, Andrea
    Tesei, Alberto
    [J]. JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2021, 18 (04) : 857 - 898