A universal Hamilton-Jacobi equation for second-order ODEs

被引:3
|
作者
Prince, GE [1 ]
Aldridge, JE [1 ]
Byrnes, GB [1 ]
机构
[1] La Trobe Univ, Dept Math, Bundoora, Vic 3083, Australia
来源
基金
美国国家卫生研究院;
关键词
D O I
10.1088/0305-4470/32/5/013
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A universal version of the Hamilton-Jacobi equation on R x TM arises from the Liouville-Arnol'd theorem for a completely integrable system on a finite-dimensional manifold M. We give necessary and sufficient conditions for such complete integrability to imply a canonical separability of both this universal Hamilton-Jacobi equation and its traditional counterpart. The geodesic case is particularly interesting. We show that these conditions also apply for systems of second-order ordinary differential equations (contact Bows) which are not Euler-Lagrange. The Kerr metric, the Toda lattice and a completely integrable contact flow are given as examples.
引用
收藏
页码:827 / 844
页数:18
相关论文
共 50 条
  • [21] Jacobi fields and linear connections for arbitrary second-order ODEs
    Jerie, M
    Prince, GE
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2002, 43 (04) : 351 - 370
  • [22] The Hamilton-Jacobi equation on Lie affgebroids
    Marrero, J. C.
    Sosa, D.
    [J]. INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2006, 3 (03) : 605 - 622
  • [23] RANDOM WALK AND THE HAMILTON-JACOBI EQUATION
    EVERETT, CJ
    ULAM, SM
    [J]. BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1950, 56 (01) : 63 - 64
  • [24] KINEMATIC REDUCTION AND THE HAMILTON-JACOBI EQUATION
    Barbero-Linan, Maria
    de Leon, Manuel
    Martin de Diego, David
    Marrero, Juan C.
    Munoz-Lecanda, Miguel C.
    [J]. JOURNAL OF GEOMETRIC MECHANICS, 2012, 4 (03): : 207 - 237
  • [25] Lagrangian submanifolds and the Hamilton-Jacobi equation
    Barbero-Linan, Maria
    de Leon, Manuel
    Martin de Diego, David
    [J]. MONATSHEFTE FUR MATHEMATIK, 2013, 171 (3-4): : 269 - 290
  • [26] ON HAMILTON-JACOBI EQUATION OF DIFFERENTIAL GAMES
    CHATTOPADHYAY, R
    [J]. INTERNATIONAL JOURNAL OF CONTROL, 1968, 7 (02) : 145 - +
  • [27] Turnpike theorem and the Hamilton-Jacobi equation
    Rapaport, A
    Cartigny, P
    [J]. COMPTES RENDUS MATHEMATIQUE, 2002, 335 (12) : 1091 - 1094
  • [28] PRACTICAL USE OF THE HAMILTON-JACOBI EQUATION
    CHODOS, A
    SOMMERFIELD, CM
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1983, 24 (02) : 271 - 275
  • [29] HAMILTON-JACOBI EQUATION FOR DESCRIPTOR SYSTEMS
    XU, H
    MIZUKAMI, K
    [J]. SYSTEMS & CONTROL LETTERS, 1993, 21 (04) : 321 - 327
  • [30] The Hamilton-Jacobi equation: An alternative approach
    Houchmandzadeh, Bahram
    [J]. AMERICAN JOURNAL OF PHYSICS, 2020, 88 (05) : 353 - 359