Robust Variable Selection and Estimation in Threshold Regression Model

被引:2
|
作者
Li, Bo-wen [1 ]
Zhang, Yun-qi [2 ]
Tang, Nian-sheng [2 ]
机构
[1] Univ Sci & Technol China, Sch Management, Hefei 230026, Peoples R China
[2] Yunnan Univ, Key Lab Stat Modeling & Data Anal Yunnan Prov, Kunming 650091, Yunnan, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Threshold regression; Robust estimation; Lasso; CHANGE-POINT; LASSO; SHRINKAGE;
D O I
10.1007/s10255-020-0939-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We combine the robust criterion with the lasso penalty together for the high-dimensional threshold model. It estimates regression coeffcients as well as the threshold parameter robustly that can be resistant to outliers or heavy-tailed noises and perform variable selection simultaneously. We illustrate our approach with the absolute loss, the Huber's loss, and the Tukey's loss, it can also be extended to any other robust losses. Simulation studies are conducted to demonstrate the usefulness of our robust approach. Finally, we use our estimators to investigate the presence of a shift in the effect of debt on future GDP growth.
引用
收藏
页码:332 / 346
页数:15
相关论文
共 50 条
  • [21] Shrinkage inverse regression estimation for model-free variable selection
    Bondell, Howard D.
    Li, Lexin
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2009, 71 : 287 - 299
  • [22] Bayesian variable selection and coefficient estimation in heteroscedastic linear regression model
    Alshaybawee, Taha
    Alhamzawi, Rahim
    Midi, Habshah
    Allyas, Intisar Ibrahim
    [J]. JOURNAL OF APPLIED STATISTICS, 2018, 45 (14) : 2643 - 2657
  • [23] Weighted LAD-LASSO method for robust parameter estimation and variable selection in regression
    Arslan, Olcay
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2012, 56 (06) : 1952 - 1965
  • [24] FULLY EFFICIENT ROBUST ESTIMATION, OUTLIER DETECTION AND VARIABLE SELECTION VIA PENALIZED REGRESSION
    Kong, Dehan
    Bondell, Howard D.
    Wu, Yichao
    [J]. STATISTICA SINICA, 2018, 28 (02) : 1031 - 1052
  • [25] Estimation and variable selection in nonparametric heteroscedastic regression
    Yau, P
    Kohn, R
    [J]. STATISTICS AND COMPUTING, 2003, 13 (03) : 191 - 208
  • [26] Estimation and variable selection in nonparametric heteroscedastic regression
    Paul Yau
    Robert Kohn
    [J]. Statistics and Computing, 2003, 13 : 191 - 208
  • [27] Robust variable selection for finite mixture regression models
    Qingguo Tang
    R. J. Karunamuni
    [J]. Annals of the Institute of Statistical Mathematics, 2018, 70 : 489 - 521
  • [28] A robust and efficient variable selection method for linear regression
    Yang, Zhuoran
    Fu, Liya
    Wang, You-Gan
    Dong, Zhixiong
    Jiang, Yunlu
    [J]. JOURNAL OF APPLIED STATISTICS, 2022, 49 (14) : 3677 - 3692
  • [29] Instrumental variable estimation of a threshold model
    Caner, M
    Hansen, BE
    [J]. ECONOMETRIC THEORY, 2004, 20 (05) : 813 - 843
  • [30] Variable Selection in Logistic Regression Model
    Zhang Shangli
    Zhang Lili
    Qiu Kuanmin
    Lu Ying
    Cai Baigen
    [J]. CHINESE JOURNAL OF ELECTRONICS, 2015, 24 (04) : 813 - 817