Interactive visual analytics tool for multidimensional quantitative and categorical data analysis

被引:1
|
作者
Shahid, Muhammad Laiq Ur Rahman [1 ]
Molchanov, Vladimir [1 ,2 ]
Mir, Junaid [3 ]
Shaukat, Furqan [4 ]
Linsen, Lars [1 ,2 ]
机构
[1] Jacobs Univ Bremen, D-28759 Bremen, Germany
[2] Westfalische Wilhelms Univ Munster, Munster, Germany
[3] Univ Surrey, Guildford, Surrey, England
[4] Univ Sheffield, Sheffield, S Yorkshire, England
关键词
Visual analytics; multidimensional feature space; epidemiology; quantitative and categorical variables; COHORT; HEALTH;
D O I
10.1177/1473871620908034
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
With the advances in science and technology, a rapid growth of multidimensional (multivariate) datasets is observed in different fields. Projection and visualization of such data to a lower dimensional space without losing the data structure is a challenging task. We propose an interactive visual analytics tool that is applied for the combined analysis of multidimensional numerical and categorical data. The tool helps the analyst not only to find the clusters of similar objects but also to identify the important features specific to these clusters. The efficacy of the various functionalities of the tool is examined analyzing epidemiological data to understand the pathogenesis of obstructive sleep apnea. Our approach helps the user to visually analyze the data and get a better understanding of the data. The tool would be a valuable resource for analysts working on numerical and categorical data.
引用
收藏
页码:234 / 246
页数:13
相关论文
共 50 条
  • [31] HistoryViewer: Instrumenting a visual analytics application to support revisiting a session of interactive data analysis
    [J]. 1600, Association for Computing Machinery, 2 Penn Plaza, Suite 701, New York, NY 10121-0701, United States (01):
  • [32] Improving Big Data Visual Analytics with Interactive Virtual Reality
    Moran, Andrew
    Gadepally, Vijay
    Hubbell, Matthew
    Kepner, Jeremy
    [J]. 2015 IEEE HIGH PERFORMANCE EXTREME COMPUTING CONFERENCE (HPEC), 2015,
  • [33] SparseTrajAnalytics: an Interactive Visual Analytics System for Sparse Trajectory Data
    Xinyue Ye
    Jiaxin Du
    Xi Gong
    Ye Zhao
    Shamal AL-Dohuki
    Farah Kamw
    [J]. Journal of Geovisualization and Spatial Analysis, 2021, 5
  • [34] EdiFlow: data-intensive interactive workflows for visual analytics
    Benzaken, Veronique
    Fekete, Jean-Daniel
    Hemery, Pierre-Luc
    Khemiri, Wael
    Manolescu, Ioana
    [J]. IEEE 27TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE 2011), 2011, : 780 - 791
  • [35] SparseTrajAnalytics: an Interactive Visual Analytics System for Sparse Trajectory Data
    Ye, Xinyue
    Du, Jiaxin
    Gong, Xi
    Zhao, Ye
    AL-Dohuki, Shamal
    Kamw, Farah
    [J]. JOURNAL OF GEOVISUALIZATION AND SPATIAL ANALYSIS, 2021, 5 (01)
  • [36] A Tool for Subjective and Interactive Visual Data Exploration
    Kang, Bo
    Puolamaki, Kai
    Lijffijt, Jefrey
    De Bie, Tijl
    [J]. MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2016, PT III, 2016, 9853 : 3 - 7
  • [37] BiNA: A Visual Analytics Tool for Biological Network Data
    Gerasch, Andreas
    Faber, Daniel
    Kuentzer, Jan
    Niermann, Peter
    Kohlbacher, Oliver
    Lenhof, Hans-Peter
    Kaufmann, Michael
    [J]. PLOS ONE, 2014, 9 (02):
  • [38] Cubix: A Visual Analytics Tool for Conceptual and Semantic Data
    Melo, Cassio
    Mikheev, Alexander
    Le Grand, Benedicte
    Aufaure, Marie-Aude
    [J]. 12TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS (ICDMW 2012), 2012, : 894 - 897
  • [39] Integrated Visual Analytics Tool for Heterogeneous Text Data
    Park, Jihyoun
    [J]. 2014 IEEE CONFERENCE ON VISUAL ANALYTICS SCIENCE AND TECHNOLOGY (VAST), 2014, : 325 - 326
  • [40] Interactive Visual Decision Analytics
    Ebert, David S.
    Fisher, Brian
    Gaither, Kelly
    [J]. PROCEEDINGS OF THE 49TH ANNUAL HAWAII INTERNATIONAL CONFERENCE ON SYSTEM SCIENCES (HICSS 2016), 2016, : 1426 - 1426