Interactive visual analytics tool for multidimensional quantitative and categorical data analysis

被引:1
|
作者
Shahid, Muhammad Laiq Ur Rahman [1 ]
Molchanov, Vladimir [1 ,2 ]
Mir, Junaid [3 ]
Shaukat, Furqan [4 ]
Linsen, Lars [1 ,2 ]
机构
[1] Jacobs Univ Bremen, D-28759 Bremen, Germany
[2] Westfalische Wilhelms Univ Munster, Munster, Germany
[3] Univ Surrey, Guildford, Surrey, England
[4] Univ Sheffield, Sheffield, S Yorkshire, England
关键词
Visual analytics; multidimensional feature space; epidemiology; quantitative and categorical variables; COHORT; HEALTH;
D O I
10.1177/1473871620908034
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
With the advances in science and technology, a rapid growth of multidimensional (multivariate) datasets is observed in different fields. Projection and visualization of such data to a lower dimensional space without losing the data structure is a challenging task. We propose an interactive visual analytics tool that is applied for the combined analysis of multidimensional numerical and categorical data. The tool helps the analyst not only to find the clusters of similar objects but also to identify the important features specific to these clusters. The efficacy of the various functionalities of the tool is examined analyzing epidemiological data to understand the pathogenesis of obstructive sleep apnea. Our approach helps the user to visually analyze the data and get a better understanding of the data. The tool would be a valuable resource for analysts working on numerical and categorical data.
引用
收藏
页码:234 / 246
页数:13
相关论文
共 50 条
  • [21] Interactive Visual Analytics Application for Spatiotemporal Movement Data
    Guan Yifei
    Seong, Kam Tin
    [J]. 2017 IEEE CONFERENCE ON VISUAL ANALYTICS SCIENCE AND TECHNOLOGY (VAST), 2017, : 195 - 196
  • [22] Epiviz: Interactive visual analytics for functional genomics data
    Chelaru F.
    Smith L.
    Goldstein N.
    Bravo H.C.
    [J]. Nature Methods, 2014, 11 (9) : 938 - 940
  • [23] An interactive graphical tool for exploring sequential dependencies in categorical data
    Fitzgerald, M
    [J]. MINING AND MODELING MASSIVE DATA SETS IN SCIENCE, ENGINEERING, AND BUSINESS WITH A SUBTHEME IN ENVIRONMENTAL STATISTICS, 1997, 29 (01): : 433 - 438
  • [24] CINF 113-A novel interactive tool for multidimensional biological data analysis
    Luo, Zhaowen
    Jiang, Xuliang
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2006, 232
  • [25] Reinventing the Contingency Wheel: Scalable Visual Analytics of Large Categorical Data
    Alsallakh, Bilal
    Aigner, Wolfgang
    Miksch, Silvia
    Groeller, M. Eduard
    [J]. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2012, 18 (12) : 2849 - 2858
  • [26] DICON: Interactive Visual Analysis of Multidimensional Clusters
    Cao, Nan
    Gotz, David
    Sun, Jimeng
    Qu, Huamin
    [J]. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2011, 17 (12) : 2581 - 2590
  • [27] MILVA: An interactive tool for the exploration of multidimensional microarray data
    D'Alimonte, D
    Lowe, D
    Nabney, IT
    Mersinias, V
    Smith, CP
    [J]. BIOINFORMATICS, 2005, 21 (22) : 4192 - 4193
  • [28] Interactive visual formula composition of multidimensional data classifiers
    Derstroff, Adrian
    Leistikow, Simon
    Nahardani, Ali
    Gruen, Katja
    Franz, Marcus
    Hoerr, Verena
    Linsen, Lars
    [J]. INFORMATION VISUALIZATION, 2024,
  • [29] Multidimensional data visual exploration by interactive information segments
    Ferrer-Troyano, FJ
    Aguilar-Ruiz, JS
    Riquelme, JC
    [J]. DATA WAREHOUSING AND KNOWLEDGE DISCOVERY, PROCEEDINGS, 2004, 3181 : 239 - 248
  • [30] AGAMI: Scalable Visual Analytics over Multidimensional Data Streams
    Lu, Mingxin
    Wong, Edmund
    Barajas, Daniel
    Li, Xiaochen
    Ogundipe, Mosopefoluwa
    Wilson, Nate
    Garg, Pragya
    Joshi, Alark
    Malensek, Matthew
    [J]. 2020 IEEE/ACM INTERNATIONAL CONFERENCE ON BIG DATA COMPUTING, APPLICATIONS AND TECHNOLOGIES (BDCAT 2020), 2020, : 57 - 66