Wellposedness of second order backward SDEs

被引:156
|
作者
Soner, H. Mete [1 ,2 ]
Touzi, Nizar [3 ]
Zhang, Jianfeng [4 ]
机构
[1] ETH Swiss Fed Inst Technol, Dept Math, Zurich, Switzerland
[2] Swiss Finance Inst, CH-8092 Zurich, Switzerland
[3] Ecole Polytech Paris, CMAP, F-91128 Palaiseau, France
[4] Univ So Calif, Dept Math, Los Angeles, CA 90089 USA
基金
欧洲研究理事会; 美国国家科学基金会;
关键词
Backward SDEs; Non-dominated family of mutually singular measures; Viscosity solutions for second order PDEs; DIFFERENTIAL-EQUATIONS;
D O I
10.1007/s00440-011-0342-y
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We provide an existence and uniqueness theory for an extension of backward SDEs to the second order. While standard Backward SDEs are naturally connected to semilinear PDEs, our second order extension is connected to fully nonlinear PDEs, as suggested in Cheridito et al. (Commun. Pure Appl. Math. 60(7):1081-1110, 2007). In particular, we provide a fully nonlinear extension of the Feynman-Kac formula. Unlike (Cheridito et al. in Commun. Pure Appl. Math. 60(7):1081-1110, 2007), the alternative formulation of this paper insists that the equation must hold under a non-dominated family of mutually singular probability measures. The key argument is a stochastic representation, suggested by the optimal control interpretation, and analyzed in the accompanying paper (Soner et al. in Dual Formulation of Second Order Target Problems. arXiv:1003.6050, 2009).
引用
收藏
页码:149 / 190
页数:42
相关论文
共 50 条
  • [1] Wellposedness of second order backward SDEs
    H. Mete Soner
    Nizar Touzi
    Jianfeng Zhang
    [J]. Probability Theory and Related Fields, 2012, 153 : 149 - 190
  • [2] Nonlinear predictable representation and L1-solutions of backward SDEs and second-order backward SDEs
    Ren, Zhenjie
    Touzi, Nizar
    Yang, Junjian
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2022, 58 (02): : 639 - 666
  • [3] SECOND ORDER DISCRETIZATION OF BACKWARD SDES AND SIMULATION WITH THE CUBATURE METHOD
    Crisan, Dan
    Manolarakis, Konstantinos
    [J]. ANNALS OF APPLIED PROBABILITY, 2014, 24 (02): : 652 - 678
  • [4] Second Order Backward SDEs, Fully Nonlinear PDEs, and Applications in Finance
    Touzi, Nizar
    [J]. PROCEEDINGS OF THE INTERNATIONAL CONGRESS OF MATHEMATICIANS, VOL IV: INVITED LECTURES, 2010, : 3132 - 3150
  • [5] Numerical Fourier method and second-order Taylor scheme for backward SDEs in finance
    Ruijter, M. J.
    Oosterlee, C. W.
    [J]. APPLIED NUMERICAL MATHEMATICS, 2016, 103 : 1 - 26
  • [6] Wellposedness of Second Order Evolution Equations
    Poblete, Felipe
    Poblete, Veronica
    Pozo, Juan C.
    [J]. COMPLEX ANALYSIS AND OPERATOR THEORY, 2023, 17 (03)
  • [7] Wellposedness of Second Order Evolution Equations
    Felipe Poblete
    Verónica Poblete
    Juan C. Pozo
    [J]. Complex Analysis and Operator Theory, 2023, 17
  • [8] A second-order discretization for forward-backward SDEs using local approximations with Malliavin calculus
    Naito, Riu
    Yamada, Toshihiro
    [J]. MONTE CARLO METHODS AND APPLICATIONS, 2019, 25 (04): : 341 - 361
  • [9] Wellposedness of second order reflected BSDEs: A new formulation
    Hun, O.
    Kim, Mun-Chol
    Kim, Kon-Gun
    [J]. ESAIM-PROBABILITY AND STATISTICS, 2024, 28 : 1 - 21
  • [10] Pathwise definition of second-order SDEs
    Quer-Sardanyons, Lluis
    Tindel, Samy
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2012, 122 (02) : 466 - 497