Wellposedness of Second Order Evolution Equations

被引:0
|
作者
Poblete, Felipe [1 ]
Poblete, Veronica [2 ]
Pozo, Juan C. [2 ]
机构
[1] Univ Austral Chile, Fac Ciencias, Inst Ciencias Fis & Matemat, Valdivia, Chile
[2] Univ Chile, Fac Ciencias, Dept Matemat, Santiago, Chile
关键词
Primary; 45N05; Secondary; 34G10; 42B15; ELASTIC-SYSTEMS; MAXIMAL REGULARITY; CAUCHY; ANALYTICITY; SEMIGROUPS; OPERATORS;
D O I
10.1007/s11785-023-01345-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study a mild wellposedness notion of a second-order abstract differential equation defined in the whole line. We establish some characterizations of this property. In the first one, we define fractional spaces that contain the solution, and we extend it continuously to the natural solution space. The second one is obtained by means of Fourier multipliers over weighted Sobolev spaces on the real line. Further, using an operator-valued version of Miklhin Fourier multipliers theorem, we exhibit some examples of operators for which the mild wellposedness is satisfied. Our results extend some previous results about abstract second order evolution equations.
引用
收藏
页数:26
相关论文
共 50 条
  • [1] Wellposedness of Second Order Evolution Equations
    Felipe Poblete
    Verónica Poblete
    Juan C. Pozo
    [J]. Complex Analysis and Operator Theory, 2023, 17
  • [2] Wellposedness of second order backward SDEs
    H. Mete Soner
    Nizar Touzi
    Jianfeng Zhang
    [J]. Probability Theory and Related Fields, 2012, 153 : 149 - 190
  • [3] Wellposedness of second order backward SDEs
    Soner, H. Mete
    Touzi, Nizar
    Zhang, Jianfeng
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2012, 153 (1-2) : 149 - 190
  • [4] Wellposedness for the fourth order nonlinear Schrodinger equations
    Hao, Chengchun
    Hsiao, Ling
    Wang, Baoxiang
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 320 (01) : 246 - 265
  • [5] Wellposedness of second order reflected BSDEs: A new formulation
    Hun, O.
    Kim, Mun-Chol
    Kim, Kon-Gun
    [J]. ESAIM-PROBABILITY AND STATISTICS, 2024, 28 : 1 - 21
  • [6] Formal Solutions of Second Order Evolution Equations
    Lysik, Grzegorz
    [J]. ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2011, 30 (01): : 95 - 104
  • [7] SECOND ORDER QUASILINEAR FUNCTIONAL EVOLUTION EQUATIONS
    Simon, Laszlo
    [J]. MATHEMATICA BOHEMICA, 2015, 140 (02): : 139 - 152
  • [8] Wellposedness of impulsive functional abstract second-order differential equations with state-dependent delay
    Karthikeyan, Kulandhivel
    Tamizharasan, Dhatchinamoorthy
    Abdeljawad, Thabet
    Nisar, Kottakkaran Sooppy
    [J]. INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2023, 24 (04) : 1355 - 1368
  • [9] Second Order Linear Evolution Equations with General Dissipation
    Filippo Dell’Oro
    Vittorino Pata
    [J]. Applied Mathematics & Optimization, 2021, 83 : 1877 - 1917
  • [10] SOME NONLINEAR EVOLUTION EQUATIONS OF SECOND-ORDER
    TSUTSUMI, M
    [J]. PROCEEDINGS OF THE JAPAN ACADEMY, 1971, 47 : 950 - 955