Wellposedness of second order backward SDEs

被引:156
|
作者
Soner, H. Mete [1 ,2 ]
Touzi, Nizar [3 ]
Zhang, Jianfeng [4 ]
机构
[1] ETH Swiss Fed Inst Technol, Dept Math, Zurich, Switzerland
[2] Swiss Finance Inst, CH-8092 Zurich, Switzerland
[3] Ecole Polytech Paris, CMAP, F-91128 Palaiseau, France
[4] Univ So Calif, Dept Math, Los Angeles, CA 90089 USA
基金
欧洲研究理事会; 美国国家科学基金会;
关键词
Backward SDEs; Non-dominated family of mutually singular measures; Viscosity solutions for second order PDEs; DIFFERENTIAL-EQUATIONS;
D O I
10.1007/s00440-011-0342-y
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We provide an existence and uniqueness theory for an extension of backward SDEs to the second order. While standard Backward SDEs are naturally connected to semilinear PDEs, our second order extension is connected to fully nonlinear PDEs, as suggested in Cheridito et al. (Commun. Pure Appl. Math. 60(7):1081-1110, 2007). In particular, we provide a fully nonlinear extension of the Feynman-Kac formula. Unlike (Cheridito et al. in Commun. Pure Appl. Math. 60(7):1081-1110, 2007), the alternative formulation of this paper insists that the equation must hold under a non-dominated family of mutually singular probability measures. The key argument is a stochastic representation, suggested by the optimal control interpretation, and analyzed in the accompanying paper (Soner et al. in Dual Formulation of Second Order Target Problems. arXiv:1003.6050, 2009).
引用
收藏
页码:149 / 190
页数:42
相关论文
共 50 条