Minimal length maximal green sequences and triangulations of polygons

被引:5
|
作者
Cormier, E. [1 ]
Dillery, P. [2 ]
Resh, J. [3 ]
Serhiyenko, K. [4 ]
Whelan, J. [5 ]
机构
[1] Dept Math, Bowdoin Coll, Brunswick, ME 04011 USA
[2] Univ Virginia, Dept Math, Charlottesville, VA 22904 USA
[3] Roger Williams Univ, Dept Math, Bristol, RI 02809 USA
[4] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
[5] Vassar Coll, Dept Math, Poughkeepsie, NY 12604 USA
基金
美国国家科学基金会;
关键词
Maximal green sequence; Cluster algebra; Surface triangulation; CLUSTER ALGEBRAS; QUIVERS;
D O I
10.1007/s10801-016-0694-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We use combinatorics of quivers and the corresponding surfaces to study maximal green sequences of minimal length for quivers of type . We prove that such sequences have length , where n is the number of vertices and t is the number of 3-cycles in the quiver. Moreover, we develop a procedure that yields these minimal length maximal green sequences.
引用
收藏
页码:905 / 930
页数:26
相关论文
共 50 条
  • [41] The Effects of Minimal Length, Maximal Momentum, and Minimal Momentum in Entropic Force
    Feng, Zhong-Wen
    Yang, Shu-Zheng
    Li, Hui-Ling
    Zu, Xiao-Tao
    ADVANCES IN HIGH ENERGY PHYSICS, 2016, 2016
  • [42] RAY SHOOTING IN POLYGONS USING GEODESIC TRIANGULATIONS
    CHAZELLE, B
    EDELSBRUNNER, H
    GRIGNI, M
    GUIBAS, L
    HERSHBERGER, J
    SHARIR, M
    SNOEYINK, J
    LECTURE NOTES IN COMPUTER SCIENCE, 1991, 510 : 661 - 673
  • [43] Optimal angle bounds for Steiner triangulations of polygons
    Bishop, Christopher J.
    PROCEEDINGS OF THE 2022 ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, SODA, 2022, : 3127 - 3143
  • [44] Improved bounds for acute triangulations of convex polygons
    Zamfirescu, Carol T.
    UTILITAS MATHEMATICA, 2013, 91 : 71 - 79
  • [45] On Hamiltonian triangulations in simple polygons - (Extended abstract)
    Narasimhan, G
    ALGORITHMS AND DATA STRUCTURES, 1997, 1272 : 321 - 330
  • [46] RAY SHOOTING IN POLYGONS USING GEODESIC TRIANGULATIONS
    CHAZELLE, B
    EDELSBRUNNER, H
    GRIGNI, M
    GUIBAS, L
    HERSHBERGER, J
    SHARIR, M
    SNOEYINK, J
    ALGORITHMICA, 1994, 12 (01) : 54 - 68
  • [47] Upper bound on dilation of triangulations of cyclic polygons
    Amarnadh, Narayanasetty
    Mitra, Pinaki
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2006, PT 1, 2006, 3980 : 1 - 9
  • [48] Finding equal-diameter triangulations in polygons
    Bezdek, Andras
    Bisztriczky, Ted
    BEITRAGE ZUR ALGEBRA UND GEOMETRIE-CONTRIBUTIONS TO ALGEBRA AND GEOMETRY, 2015, 56 (02): : 541 - 549
  • [49] COUNTING THIN AND BUSHY TRIANGULATIONS OF CONVEX POLYGONS
    CHATTOPADHYAY, S
    DAS, PP
    PATTERN RECOGNITION LETTERS, 1991, 12 (03) : 139 - 144
  • [50] Minimal Length, Maximal Momentum and the Entropic Force Law
    Kourosh Nozari
    Pouria Pedram
    M. Molkara
    International Journal of Theoretical Physics, 2012, 51 : 1268 - 1275