Minimal length maximal green sequences and triangulations of polygons

被引:5
|
作者
Cormier, E. [1 ]
Dillery, P. [2 ]
Resh, J. [3 ]
Serhiyenko, K. [4 ]
Whelan, J. [5 ]
机构
[1] Dept Math, Bowdoin Coll, Brunswick, ME 04011 USA
[2] Univ Virginia, Dept Math, Charlottesville, VA 22904 USA
[3] Roger Williams Univ, Dept Math, Bristol, RI 02809 USA
[4] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
[5] Vassar Coll, Dept Math, Poughkeepsie, NY 12604 USA
基金
美国国家科学基金会;
关键词
Maximal green sequence; Cluster algebra; Surface triangulation; CLUSTER ALGEBRAS; QUIVERS;
D O I
10.1007/s10801-016-0694-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We use combinatorics of quivers and the corresponding surfaces to study maximal green sequences of minimal length for quivers of type . We prove that such sequences have length , where n is the number of vertices and t is the number of 3-cycles in the quiver. Moreover, we develop a procedure that yields these minimal length maximal green sequences.
引用
收藏
页码:905 / 930
页数:26
相关论文
共 50 条