Gradient estimates for some evolution equations on complete smooth metric measure spaces

被引:1
|
作者
Nguyen Thac Dung [1 ,2 ]
Kieu Thi Thuy Linh [3 ]
Ninh Van Thu [1 ]
机构
[1] Hanoi Univ Sci VNU, Fac Math Mech Informat, 334 Nguyen Trai Rd, Hanoi, Vietnam
[2] THANG Long Univ, Thang Long Inst Math & Appl Sci TIMAS, Hanoi, Vietnam
[3] Natl Univ Civil Engn, Fac Informat Technol, 55 Giai Phong Rd, Hanoi, Vietnam
来源
PUBLICATIONES MATHEMATICAE-DEBRECEN | 2020年 / 96卷 / 1-2期
关键词
gradient estimates; Bakry-Emery curvature; complete smooth metric measure space; Harnack-type inequalities; Liouville-type theorems; NONLINEAR PARABOLIC EQUATION; HEAT-EQUATION; THEOREM; EXTENSION; KERNEL;
D O I
10.5486/PMD.2020.8248
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider the following general evolution equation u(t) = Delta(f)u + aulog(alpha)u + bu on a smooth metric measure space (M-n, g, e(-f)dv). We give a local gradient estimate of Souplet-Zhang type for positive smooth solutions of this equation provided that the Bakry-Emery curvature is bounded from below. When f is constant, we investigate the general evolution equation on compact Riemannian manifolds with nonconvex boundary satisfying an interior rolling R-ball condition. We show a gradient estimate of Hamilton type on such manifolds.
引用
收藏
页码:1 / 21
页数:21
相关论文
共 50 条
  • [31] Hamilton type gradient estimate for a nonlinear diffusion equation on smooth metric measure spaces
    Nguyen Thac Dung
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2017, 51 : 153 - 162
  • [32] A splitting theorem on smooth metric measure spaces
    Nguyen Thac Dung
    Archiv der Mathematik, 2012, 99 : 179 - 187
  • [33] A splitting theorem on smooth metric measure spaces
    Nguyen Thac Dung
    ARCHIV DER MATHEMATIK, 2012, 99 (02) : 179 - 187
  • [34] Weighted Cheeger constant and first eigenvalue lower bound estimates on smooth metric measure spaces
    Abolarinwa, Abimbola
    Ali, Akram
    Alkhadi, Ali
    ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
  • [35] Weighted Cheeger constant and first eigenvalue lower bound estimates on smooth metric measure spaces
    Abimbola Abolarinwa
    Akram Ali
    Ali Alkhadi
    Advances in Difference Equations, 2021
  • [36] DISCONTINUOUS EIKONAL EQUATIONS IN METRIC MEASURE SPACES
    Liu, Qing
    Shanmugalingam, Nageswari
    Zhou, Xiaodan
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2025, 378 (01) : 695 - 729
  • [37] Nonlocal Schrodinger equations in metric measure spaces
    Actis, Marcelo
    Aimar, Hugo
    Bongioanni, Bruno
    Gomez, Ivana
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 435 (01) : 425 - 439
  • [38] Rigidity of weighted Einstein smooth metric measure spaces
    Brozos-Vazquez, Miguel
    Mojon-Alvarez, Diego
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2024, 181 : 91 - 112
  • [39] Comparison theorems on smooth metric measure spaces with boundary
    Wang, Lin Feng
    Zhang, Ze Yu
    Zhou, Yu Jie
    ADVANCES IN GEOMETRY, 2016, 16 (04) : 401 - 411
  • [40] Smooth metric measure spaces with weighted Poincar, inequality
    Nguyen Thac Dung
    Sung, Chiung Jue Anna
    MATHEMATISCHE ZEITSCHRIFT, 2013, 273 (3-4) : 613 - 632