Thermodynamic glass transition in a spin glass without time-reversal symmetry

被引:51
|
作者
Alvarez Banos, Raquel [3 ,4 ]
Cruz, Andres [3 ,4 ]
Antonio Fernandez, Luis [3 ,5 ]
Miguel Gil-Narvion, Jose [3 ]
Gordillo-Guerrero, Antonio [3 ,6 ]
Guidetti, Marco [3 ]
Iniguez, David [3 ,7 ]
Maiorano, Andrea [1 ,2 ,3 ]
Marinari, Enzo [1 ,2 ]
Martin-Mayor, Victor [3 ,5 ]
Monforte-Garcia, Jorge [3 ,4 ]
Munoz Sudupe, Antonio [5 ]
Navarro, Denis [8 ]
Parisi, Giorgio [1 ,2 ]
Perez-Gaviro, Sergio [3 ]
Jesus Ruiz-Lorenzo, Juan [3 ,9 ]
Fabio Schifano, Sebastiano [10 ,11 ]
Seoane, Beatriz [3 ,5 ]
Tarancon, Alfonso [3 ,4 ]
Tellez, Pedro [4 ]
Tripiccione, Raffaele [10 ,11 ]
Yllanes, David [3 ,5 ]
机构
[1] Univ Roma La Sapienza, Dipartimento Fis, IPCF CNR, I-00185 Rome, Italy
[2] INFN, I-00185 Rome, Italy
[3] Inst Biocomp & Fis Sistemas Complejos BIFI, Zaragoza 50009, Spain
[4] Univ Zaragoza, Dept Fis Teor, E-50009 Zaragoza, Spain
[5] Univ Complutense, Dept Fis Teor 1, E-28040 Madrid, Spain
[6] Univ Extremadura, Dept Ingn Elect Elect & Automat, E-06071 Caceres, Spain
[7] Fdn Agencia Aragonesa Invest & Desarrollo ARAID, Zaragoza 50009, Spain
[8] Univ Zaragoza, Dept Ingn Elect & Comunicac, Zaragoza 50018, Spain
[9] Univ Extremadura, Dept Fis, E-06071 Badajoz, Spain
[10] Univ Ferrara, Dipartmento Fis, I-44122 Ferrara, Italy
[11] INFN, Sez Ferrara, I-44122 Ferrara, Italy
关键词
de Almeida-Thouless line; critical exponents; parallel tempering; scaling corrections; BEHAVIOR;
D O I
10.1073/pnas.1203295109
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Spin glasses are a longstanding model for the sluggish dynamics that appear at the glass transition. However, spin glasses differ from structural glasses in a crucial feature: they enjoy a time reversal symmetry. This symmetry can be broken by applying an external magnetic field, but embarrassingly little is known about the critical behavior of a spin glass in a field. In this context, the space dimension is crucial. Simulations are easier to interpret in a large number of dimensions, but one must work below the upper critical dimension (i.e., in d < 6) in order for results to have relevance for experiments. Here we show conclusive evidence for the presence of a phase transition in a four-dimensional spin glass in a field. Two ingredients were crucial for this achievement: massive numerical simulations were carried out on the Janus special-purpose computer, and a new and powerful finite-size scaling method.
引用
收藏
页码:6452 / 6456
页数:5
相关论文
共 50 条
  • [41] Time-reversal symmetry breaking? (reply)
    Juan C. Campuzano
    Adam Kaminski
    Stephan Rosenkranz
    Helen M. Fretwell
    Nature, 2004, 431 : 2 - 3
  • [42] Time-reversal symmetry in nonlinear optics
    Trzeciecki, M
    Hübner, W
    PHYSICAL REVIEW B, 2000, 62 (21): : 13888 - 13891
  • [43] Three facets of time-reversal symmetry
    Lopez, Cristian
    EUROPEAN JOURNAL FOR PHILOSOPHY OF SCIENCE, 2021, 11 (02)
  • [44] Three facets of time-reversal symmetry
    Cristian Lopez
    European Journal for Philosophy of Science, 2021, 11
  • [45] Topologically protected extended states in disordered quantum spin-Hall systems without time-reversal symmetry
    Xu, Zhong
    Sheng, L.
    Xing, D. Y.
    Prodan, Emil
    Sheng, D. N.
    PHYSICAL REVIEW B, 2012, 85 (07)
  • [46] Thermodynamic bounds on time-reversal asymmetry
    Liang, Shiling
    Pigolotti, Simone
    PHYSICAL REVIEW E, 2023, 108 (06)
  • [47] Spin texture of time-reversal symmetry invariant surface states on W(110)
    Kutnyakhov, D.
    Chernov, S.
    Medjanik, K.
    Wallauer, R.
    Tusche, C.
    Ellguth, M.
    Nepijko, S. A.
    Krivenkov, M.
    Braun, J.
    Borek, S.
    Minar, J.
    Ebert, H.
    Elmers, H. J.
    Schoenhense, G.
    SCIENTIFIC REPORTS, 2016, 6
  • [48] Effective time-reversal symmetry breaking in the spin relaxation in a graphene quantum dot
    Struck, P. R.
    Burkard, Guido
    PHYSICAL REVIEW B, 2010, 82 (12):
  • [49] Spin texture of time-reversal symmetry invariant surface states on W(110)
    D. Kutnyakhov
    S. Chernov
    K. Medjanik
    R. Wallauer
    C. Tusche
    M. Ellguth
    S. A. Nepijko
    M. Krivenkov
    J. Braun
    S. Borek
    J. Minár
    H. Ebert
    H. J. Elmers
    G. Schönhense
    Scientific Reports, 6
  • [50] Spin-orbit coupling in the kagome lattice with flux and time-reversal symmetry
    Titvinidze, Irakli
    Legendre, Julian
    Grothus, Maarten
    Irsigler, Bernhard
    Le Hur, Karyn
    Hofstetter, Walter
    PHYSICAL REVIEW B, 2021, 103 (19)