Thermodynamic glass transition in a spin glass without time-reversal symmetry

被引:51
|
作者
Alvarez Banos, Raquel [3 ,4 ]
Cruz, Andres [3 ,4 ]
Antonio Fernandez, Luis [3 ,5 ]
Miguel Gil-Narvion, Jose [3 ]
Gordillo-Guerrero, Antonio [3 ,6 ]
Guidetti, Marco [3 ]
Iniguez, David [3 ,7 ]
Maiorano, Andrea [1 ,2 ,3 ]
Marinari, Enzo [1 ,2 ]
Martin-Mayor, Victor [3 ,5 ]
Monforte-Garcia, Jorge [3 ,4 ]
Munoz Sudupe, Antonio [5 ]
Navarro, Denis [8 ]
Parisi, Giorgio [1 ,2 ]
Perez-Gaviro, Sergio [3 ]
Jesus Ruiz-Lorenzo, Juan [3 ,9 ]
Fabio Schifano, Sebastiano [10 ,11 ]
Seoane, Beatriz [3 ,5 ]
Tarancon, Alfonso [3 ,4 ]
Tellez, Pedro [4 ]
Tripiccione, Raffaele [10 ,11 ]
Yllanes, David [3 ,5 ]
机构
[1] Univ Roma La Sapienza, Dipartimento Fis, IPCF CNR, I-00185 Rome, Italy
[2] INFN, I-00185 Rome, Italy
[3] Inst Biocomp & Fis Sistemas Complejos BIFI, Zaragoza 50009, Spain
[4] Univ Zaragoza, Dept Fis Teor, E-50009 Zaragoza, Spain
[5] Univ Complutense, Dept Fis Teor 1, E-28040 Madrid, Spain
[6] Univ Extremadura, Dept Ingn Elect Elect & Automat, E-06071 Caceres, Spain
[7] Fdn Agencia Aragonesa Invest & Desarrollo ARAID, Zaragoza 50009, Spain
[8] Univ Zaragoza, Dept Ingn Elect & Comunicac, Zaragoza 50018, Spain
[9] Univ Extremadura, Dept Fis, E-06071 Badajoz, Spain
[10] Univ Ferrara, Dipartmento Fis, I-44122 Ferrara, Italy
[11] INFN, Sez Ferrara, I-44122 Ferrara, Italy
关键词
de Almeida-Thouless line; critical exponents; parallel tempering; scaling corrections; BEHAVIOR;
D O I
10.1073/pnas.1203295109
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Spin glasses are a longstanding model for the sluggish dynamics that appear at the glass transition. However, spin glasses differ from structural glasses in a crucial feature: they enjoy a time reversal symmetry. This symmetry can be broken by applying an external magnetic field, but embarrassingly little is known about the critical behavior of a spin glass in a field. In this context, the space dimension is crucial. Simulations are easier to interpret in a large number of dimensions, but one must work below the upper critical dimension (i.e., in d < 6) in order for results to have relevance for experiments. Here we show conclusive evidence for the presence of a phase transition in a four-dimensional spin glass in a field. Two ingredients were crucial for this achievement: massive numerical simulations were carried out on the Janus special-purpose computer, and a new and powerful finite-size scaling method.
引用
收藏
页码:6452 / 6456
页数:5
相关论文
共 50 条
  • [31] CHAOS EXPERIMENTS WITH AND WITHOUT TIME-REVERSAL SYMMETRY - GUE AND GOE STATISTICS
    SO, P
    ANLAGE, SM
    OTT, E
    OERTER, RN
    PHYSICAL REVIEW LETTERS, 1995, 74 (14) : 2662 - 2665
  • [32] Quadrature nonreciprocity in bosonic networks without breaking time-reversal symmetry
    Wanjura, Clara C. C.
    Slim, Jesse J. J.
    del Pino, Javier
    Brunelli, Matteo
    Verhagen, Ewold
    Nunnenkamp, Andreas
    NATURE PHYSICS, 2023, 19 (10) : 1429 - 1436
  • [33] Dynamical field theory for glass-forming liquids, self-consistent resummations and time-reversal symmetry
    Andreanov, A.
    Biroli, G.
    Lefevre, A.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2006,
  • [34] Time-reversal symmetry breaking? Reply
    Campuzano, JC
    Kaminski, A
    Rosenkranz, S
    Fretwell, HM
    NATURE, 2004, 431 (7004) : 2 - 3
  • [35] Thermopower with broken time-reversal symmetry
    Saito, Keiji
    Benenti, Giuliano
    Casati, Giulio
    Prosen, Tomaz
    PHYSICAL REVIEW B, 2011, 84 (20):
  • [36] TIME-REVERSAL FOR SYSTEMS WITH INTERNAL SYMMETRY
    SUDARSHAN, ECG
    BIEDENHARN, LC
    FOUNDATIONS OF PHYSICS, 1995, 25 (01) : 139 - 143
  • [37] Superconductivity with broken time-reversal symmetry
    Sigrist, M
    PHYSICA B-CONDENSED MATTER, 2000, 280 (1-4) : 154 - 158
  • [38] Time-reversal symmetry and random polynomials
    Braun, D
    Kus, M
    Zyczkowski, K
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (06): : L117 - L123
  • [39] Time-reversal Symmetry in Antenna Theory
    Silveirinha, Mario G.
    SYMMETRY-BASEL, 2019, 11 (04):
  • [40] Nanostructures - Time-reversal symmetry broken
    Bains, S
    LASER FOCUS WORLD, 2004, 40 (02): : 24 - +