Utilizing Dental Electronic Health Records Data to Predict Risk for Periodontal Disease

被引:8
|
作者
Thyvalikakath, Thankam P. [1 ,2 ]
Padman, Rema [3 ]
Vyawahare, Karnali [1 ]
Darade, Pratiksha [4 ]
Paranjape, Rhucha [3 ]
机构
[1] Indiana Univ, Sch Dent, Bloomington, IN 47405 USA
[2] Regenstrief Inst Hlth Care, Ctr Biomed Informat, Indianapolis, IN USA
[3] Carnegie Mellon Univ, H John Heinz III Coll, Pittsburgh, PA 15213 USA
[4] Morgan & Stanley, New York, NY USA
来源
关键词
Periodontal disease; diabetes; smoking; risk factors; risk prediction; dental electronic health records;
D O I
10.3233/978-1-61499-564-7-1081
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Periodontal disease is a major cause for tooth loss and adversely affects individuals' oral health and quality of life. Research shows its potential association with systemic diseases like diabetes and cardiovascular disease, and social habits such as smoking. This study explores mining potential risk factors from dental electronic health records to predict and display patients' contextualized risk for periodontal disease. We retrieved relevant risk factors from structured and unstructured data on 2,370 patients who underwent comprehensive oral examinations at the Indiana University School of Dentistry, Indianapolis, IN, USA. Predicting overall risk and displaying relationships between risk factors and their influence on the patient's oral and general health can be a powerful educational and disease management tool for patients and clinicians at the point of care.
引用
收藏
页码:1081 / 1081
页数:1
相关论文
共 50 条
  • [1] Leveraging electronic health records data to predict multiple sclerosis disease activity
    Ahuja, Yuri
    Kim, Nicole
    Liang, Liang
    Cai, Tianrun
    Dahal, Kumar
    Seyok, Thany
    Lin, Chen
    Finan, Sean
    Liao, Katherine
    Savovoa, Guergana
    Chitnis, Tanuja
    Cai, Tianxi
    Xia, Zongqi
    [J]. ANNALS OF CLINICAL AND TRANSLATIONAL NEUROLOGY, 2021, 8 (04): : 800 - 810
  • [2] Electronic Health Records to Predict Gestational Diabetes Risk
    Mateen, Bilal A.
    David, Anna L.
    Denaxas, Spiros
    [J]. TRENDS IN PHARMACOLOGICAL SCIENCES, 2020, 41 (05) : 301 - 304
  • [3] Utilizing Electronic Dental Records to Predict Neuro-Degenerative Diseases in a Dental Setting: A Pilot Study
    Patel, Jay
    Wu, Huanmei
    [J]. MEDINFO 2023 - THE FUTURE IS ACCESSIBLE, 2024, 310 : 1322 - 1326
  • [4] Developing Automated Computer Algorithms to Phenotype Periodontal Disease Diagnoses in Electronic Dental Records
    Patel, Jay Sureshbhai
    Brandon, Ryan
    Tellez, Marisol
    Albandar, Jasim M.
    Rao, Rishi
    Krois, Joachim
    Wu, Huanmei
    [J]. METHODS OF INFORMATION IN MEDICINE, 2022, 61 : E125 - E133
  • [5] Caries Risk Documentation And Prevention: eMeasures For Dental Electronic Health Records
    Bangar, Suhasini
    Neumann, Ana
    White, Joel M.
    Yansane, Alfa
    Johnson, Todd R.
    Olson, Gregory W.
    Kumar, Shwetha V.
    Kookal, Krishna K.
    Kim, Aram
    Obadan-Udoh, Enihomo
    Mertz, Elizabeth
    Simmons, Kristen
    Mullins, Joanna
    Brandon, Ryan
    Walji, Muhammad F.
    Kalenderian, Elsbeth
    [J]. APPLIED CLINICAL INFORMATICS, 2022, 13 (01): : 80 - 90
  • [6] Electronic health records to predict GDM
    Kriebs, Anna
    [J]. NATURE REVIEWS ENDOCRINOLOGY, 2020, 16 (03) : 130 - 130
  • [7] Electronic health records to predict GDM
    Kriebs, Anna
    [J]. NATURE REVIEWS ENDOCRINOLOGY, 2020, 16 (3) : 130 - 130
  • [8] Electronic health records to predict GDM
    Anna Kriebs
    [J]. Nature Reviews Endocrinology, 2020, 16 : 130 - 130
  • [9] Using Natural Language Processing to Predict Risk in Electronic Health Records
    Duy Van Le
    Montgomery, James
    Kirkby, Kenneth
    Scanlan, Joel
    [J]. MEDINFO 2023 - THE FUTURE IS ACCESSIBLE, 2024, 310 : 574 - 578
  • [10] Leveraging Electronic Health Records Data to Predict Multiple Sclerosis Activity
    Ahuja, Y. V.
    Kim, N.
    Liang, L.
    Cai, T.
    Dahal, K.
    Seyok, T.
    Lin, C.
    Finan, S.
    Liao, K.
    Savova, G.
    Chitnis, T.
    Cai, T.
    Xia, Z.
    [J]. MULTIPLE SCLEROSIS JOURNAL, 2021, 27 (1_SUPPL) : 15 - 16