Leveraging electronic health records data to predict multiple sclerosis disease activity

被引:15
|
作者
Ahuja, Yuri [1 ]
Kim, Nicole [1 ]
Liang, Liang [1 ]
Cai, Tianrun [2 ]
Dahal, Kumar [2 ]
Seyok, Thany [2 ]
Lin, Chen [3 ]
Finan, Sean [3 ]
Liao, Katherine [2 ]
Savovoa, Guergana [3 ]
Chitnis, Tanuja [4 ]
Cai, Tianxi [1 ,5 ]
Xia, Zongqi [6 ]
机构
[1] Harvard TH Chan Sch Publ Hlth, Dept Biostat, Boston, MA USA
[2] Brigham & Womens Hosp, Dept Med, Div Rheumatol, 75 Francis St, Boston, MA 02115 USA
[3] Boston Childrens Hosp, Clin Nat Language Proc Program, Boston, MA USA
[4] Brigham & Womens Hosp, Dept Neurol, 75 Francis St, Boston, MA 02115 USA
[5] Harvard Med Sch, Dept Biomed Informat, Boston, MA 02115 USA
[6] Univ Pittsburgh, Dept Neurol & Biomed Informat, Pittsburgh, PA USA
来源
关键词
D O I
10.1002/acn3.51324
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Objective: No relapse risk prediction tool is currently available to guide treatment selection for multiple sclerosis (MS). Leveraging electronic health record (EHR) data readily available at the point of care, we developed a clinical tool for predicting MS relapse risk. Methods. Using data from a clinic-based research registry and linked EHR system between 2006 and 2016, we developed models predicting relapse events from the registry in a training set (n = 1435) and tested the model performance in an independent validation set of MS patients (n = 186). This iterative process identified prior 1-year relapse history as a key predictor of future relapse but ascertaining relapse history through the labor-intensive chart review is impractical. We pursued two-stage algorithm development: (1) L-1-regularized logistic regression (LASSO) to phenotype past 1-year relapse status from contemporaneous EHR data, (2) LASSO to predict future 1-year relapse risk using imputed prior 1-year relapse status and other algorithm-selected features. Results. The final model, comprising age, disease duration, and imputed prior 1-year relapse history, achieved a predictive AUC and F score of 0.707 and 0.307, respectively. The performance was significantly better than the baseline model (age, sex, race/ethnicity, and disease duration) and noninferior to a model containing actual prior 1-year relapse history. The predicted risk probability declined with disease duration and age. Conclusion. Our novel machine-learning algorithm predicts 1-year MS relapse with accuracy comparable to other clinical prediction tools and has applicability at the point of care. This EHR-based two-stage approach of outcome prediction may have application to neurological disease beyond MS.
引用
收藏
页码:800 / 810
页数:11
相关论文
共 50 条
  • [1] Leveraging Electronic Health Records Data to Predict Multiple Sclerosis Activity
    Ahuja, Y. V.
    Kim, N.
    Liang, L.
    Cai, T.
    Dahal, K.
    Seyok, T.
    Lin, C.
    Finan, S.
    Liao, K.
    Savova, G.
    Chitnis, T.
    Cai, T.
    Xia, Z.
    [J]. MULTIPLE SCLEROSIS JOURNAL, 2021, 27 (1_SUPPL) : 15 - 16
  • [2] Leveraging Electronic Health Records for Modeling Disease Activity in Multiple Sclerosis
    Xia, Zongqi
    Chibnik, Lori
    Secor, Elizabeth
    De Jager, Philip
    [J]. NEUROLOGY, 2013, 80
  • [3] Leveraging Electronic Health Records for Research in Multiple Sclerosis
    Xia, Zongqi
    Bove, Riley
    Cai, Tianxi
    Cheng, Suchun
    Perez, Raul N. G.
    Gainer, Vivian S.
    Murphy, Shawn N.
    Chen, Pei J.
    Savova, Guergana K.
    Liao, Katherine
    Karlson, Elizabeth W.
    Shaw, Stanley
    Ananthkrishnan, Ashwin N.
    Szolovits, Peter
    Churchill, Susanne E.
    Kohane, Issac S.
    Plenge, Robert M.
    De Jager, Philip L.
    [J]. ANNALS OF NEUROLOGY, 2012, 72 : S141 - S141
  • [4] Leveraging Electronic Health Records for Studying Multiple Sclerosis
    Xia, Zongqi
    Cai, Tianxi
    Cheng, Suchun
    Perez, Raul N. G.
    Gainer, Vivian S.
    Murphy, Shwan N.
    Chen, Pei J.
    Savova, Guergana K.
    Liao, Katherine P.
    Karlson, Elizabeth W.
    Ananthakrishnan, Ashwin N.
    Szolovitis, Peter
    Churchill, Susanne E.
    Kohane, Issac S.
    Plenge, Robert M.
    De Jager, Philip L.
    [J]. ANNALS OF NEUROLOGY, 2012, 72 : S119 - S119
  • [5] Leveraging electronic health records for research in multiple sclerosis
    Xia, Z.
    Bove, R.
    Cai, T.
    Cheng, S.
    Perez, R.
    Gainer, V.
    Murphy, S.
    Chen, P.
    Savova, G.
    Liao, K.
    Karlson, E.
    Shaw, S.
    Ananthakrishnan, A.
    Szolovits, P.
    Churchill, S.
    Kohane, I.
    Plenge, R.
    De Jager, P.
    [J]. MULTIPLE SCLEROSIS JOURNAL, 2012, 18 : 92 - 93
  • [6] Temporal trends of multiple sclerosis disease activity: Electronic health records indicators
    Liang, Liang
    Kim, Nicole
    Hou, Jue
    Cai, Tianrun
    Dahal, Kumar
    Lin, Chen
    Finan, Sean
    Savovoa, Guergana
    Rosso, Mattia
    Polgar-Tucsanyi, Mariann
    Weiner, Howard
    Chitnis, Tanuja
    Cai, Tianxi
    Xia, Zongqi
    [J]. MULTIPLE SCLEROSIS AND RELATED DISORDERS, 2022, 57
  • [7] Leveraging electronic health records for a phenome-wide examination of the comorbidity burden associated with multiple sclerosis disease outcome
    Goodman, M.
    Healy, B.
    Cai, T.
    Weiner, H. L.
    Chitnis, T.
    De Jager, P. L.
    Xia, Z.
    [J]. MULTIPLE SCLEROSIS JOURNAL, 2014, 20 : 164 - 164
  • [8] Modeling Disease Severity in Multiple Sclerosis Using Electronic Health Records
    Xia, Zongqi
    Secor, Elizabeth
    Chibnik, Lori B.
    Bove, Riley M.
    Cheng, Suchun
    Chitnis, Tanuja
    Cagan, Andrew
    Gainer, Vivian S.
    Chen, Pei J.
    Liao, Katherine P.
    Shaw, Stanley Y.
    Ananthakrishnan, Ashwin N.
    Szolovits, Peter
    Weiner, Howard L.
    Karlson, Elizabeth W.
    Murphy, Shawn N.
    Savova, Guergana K.
    Cai, Tianxi
    Churchill, Susanne E.
    Plenge, Robert M.
    Kohane, Isaac S.
    De Jager, Philip L.
    [J]. PLOS ONE, 2013, 8 (11):
  • [9] Modelling disease severity in multiple sclerosis using electronic health records
    Xia, Z.
    Chibnik, L.
    Bove, R.
    Chitnis, T.
    Weiner, H.
    De Jager, P.
    [J]. MULTIPLE SCLEROSIS JOURNAL, 2013, 19 (11) : 498 - 498
  • [10] Utilizing Dental Electronic Health Records Data to Predict Risk for Periodontal Disease
    Thyvalikakath, Thankam P.
    Padman, Rema
    Vyawahare, Karnali
    Darade, Pratiksha
    Paranjape, Rhucha
    [J]. MEDINFO 2015: EHEALTH-ENABLED HEALTH, 2015, 216 : 1081 - 1081