Electronic Health Records to Predict Gestational Diabetes Risk

被引:3
|
作者
Mateen, Bilal A. [1 ,2 ]
David, Anna L. [3 ]
Denaxas, Spiros [2 ,4 ,5 ,6 ,7 ]
机构
[1] Kings Coll Hosp London, London, England
[2] Alan Turing Inst, London, England
[3] UCL, Elizabeth Garrett Anderson Inst Womens Hlth, London, England
[4] UCL, Inst Hlth Informat, London, England
[5] Hlth Data Res UK, London, England
[6] UCL, Natl Inst Hlth Res Univ Coll London Hosp, Biomed Res Ctr, London, England
[7] UCL, British Heart Fdn Res Accelerator, London, England
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1016/j.tips.2020.03.003
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Gestational diabetes mellitus is a common pregnancy complication associated with significant adverse health outcomes for both women and infants. Effective screening and early prediction tools as part of routine clinical care are needed to reduce the impact of the disease on the baby and mother. Using large-scale electronic health records, Artzi and colleagues developed and evaluated a machine learning driven tool to identify women at high and low risk of GDM. Their findings showcase how artificial intelligence approaches can potentially be embedded in clinical care to enable accurate and rapid risk stratification.
引用
收藏
页码:301 / 304
页数:5
相关论文
共 50 条
  • [1] Prediction of gestational diabetes based on nationwide electronic health records
    Artzi, Nitzan Shalom
    Shilo, Smadar
    Hadar, Eran
    Rossman, Hagai
    Barbash-Hazan, Shiri
    Ben-Haroush, Avi
    Balicer, Ran D.
    Feldman, Becca
    Wiznitzer, Arnon
    Segal, Eran
    [J]. NATURE MEDICINE, 2020, 26 (01) : 71 - +
  • [2] Prediction of gestational diabetes based on nationwide electronic health records
    Nitzan Shalom Artzi
    Smadar Shilo
    Eran Hadar
    Hagai Rossman
    Shiri Barbash-Hazan
    Avi Ben-Haroush
    Ran D. Balicer
    Becca Feldman
    Arnon Wiznitzer
    Eran Segal
    [J]. Nature Medicine, 2020, 26 : 71 - 76
  • [3] Electronic health records to predict GDM
    Kriebs, Anna
    [J]. NATURE REVIEWS ENDOCRINOLOGY, 2020, 16 (03) : 130 - 130
  • [4] Electronic health records to predict GDM
    Kriebs, Anna
    [J]. NATURE REVIEWS ENDOCRINOLOGY, 2020, 16 (3) : 130 - 130
  • [5] Electronic health records to predict GDM
    Anna Kriebs
    [J]. Nature Reviews Endocrinology, 2020, 16 : 130 - 130
  • [6] Using Natural Language Processing to Predict Risk in Electronic Health Records
    Duy Van Le
    Montgomery, James
    Kirkby, Kenneth
    Scanlan, Joel
    [J]. MEDINFO 2023 - THE FUTURE IS ACCESSIBLE, 2024, 310 : 574 - 578
  • [7] Early Prediction of Gestational Diabetes Mellitus Using Electronic Health Records and Machine Learning
    Germaine, Mark A.
    O'Higgins, Amy C.
    Healy, Graham
    Egan, Brendan
    [J]. DIABETES, 2024, 73
  • [8] Utilizing Dental Electronic Health Records Data to Predict Risk for Periodontal Disease
    Thyvalikakath, Thankam P.
    Padman, Rema
    Vyawahare, Karnali
    Darade, Pratiksha
    Paranjape, Rhucha
    [J]. MEDINFO 2015: EHEALTH-ENABLED HEALTH, 2015, 216 : 1081 - 1081
  • [9] Improving diabetes management with electronic health records and patients' health records
    Benhamou, P. -Y.
    [J]. DIABETES & METABOLISM, 2011, 37 : S53 - S56
  • [10] Gestational diabetes mellitus risk score: A practical tool to predict gestational diabetes mellitus risk in Tanzania
    Nombo, Anna Patrick
    Mwanri, Akwilina Wendelin
    Brouwer-Brolsma, Elske M.
    Ramaiya, Kaushik L.
    Feskens, Edith J. M.
    [J]. DIABETES RESEARCH AND CLINICAL PRACTICE, 2018, 145 : 130 - 137