Electronic Health Records to Predict Gestational Diabetes Risk

被引:3
|
作者
Mateen, Bilal A. [1 ,2 ]
David, Anna L. [3 ]
Denaxas, Spiros [2 ,4 ,5 ,6 ,7 ]
机构
[1] Kings Coll Hosp London, London, England
[2] Alan Turing Inst, London, England
[3] UCL, Elizabeth Garrett Anderson Inst Womens Hlth, London, England
[4] UCL, Inst Hlth Informat, London, England
[5] Hlth Data Res UK, London, England
[6] UCL, Natl Inst Hlth Res Univ Coll London Hosp, Biomed Res Ctr, London, England
[7] UCL, British Heart Fdn Res Accelerator, London, England
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1016/j.tips.2020.03.003
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Gestational diabetes mellitus is a common pregnancy complication associated with significant adverse health outcomes for both women and infants. Effective screening and early prediction tools as part of routine clinical care are needed to reduce the impact of the disease on the baby and mother. Using large-scale electronic health records, Artzi and colleagues developed and evaluated a machine learning driven tool to identify women at high and low risk of GDM. Their findings showcase how artificial intelligence approaches can potentially be embedded in clinical care to enable accurate and rapid risk stratification.
引用
收藏
页码:301 / 304
页数:5
相关论文
共 50 条
  • [21] A Bayesian network model for predicting type 2 diabetes risk based on electronic health records
    Xie, Jiang
    Liu, Yan
    Zeng, Xu
    Zhang, Wu
    Mei, Zhen
    [J]. MODERN PHYSICS LETTERS B, 2017, 31 (19-21):
  • [22] Landmark Models for Optimizing the Use of Repeated Measurements of Risk Factors in Electronic Health Records to Predict Future Disease Risk
    Paige, Ellie
    Barrett, Jessica
    Stevens, David
    Keogh, Ruth H.
    Sweeting, Michael J.
    Nazareth, Irwin
    Petersen, Irene
    Wood, Angela M.
    [J]. AMERICAN JOURNAL OF EPIDEMIOLOGY, 2018, 187 (07) : 1530 - 1538
  • [23] Do provider attitudes about electronic health records predict future electronic health record use?
    Bishop, Tara F.
    Ryan, Mandy Smith
    McCullough, Colleen M.
    Shih, Sarah C.
    Casalino, Lawrence P.
    Ryan, Andrew M.
    [J]. HEALTHCARE-THE JOURNAL OF DELIVERY SCIENCE AND INNOVATION, 2015, 3 (01): : 5 - 11
  • [24] Improvement in Cardiovascular Risk Prediction with Electronic Health Records
    Pike, Mindy M.
    Decker, Paul A.
    Larson, Nicholas B.
    St Sauver, Jennifer L.
    Takahashi, Paul Y.
    Roger, Veronique L.
    Rocca, Walter A.
    Miller, Virginia M.
    Olson, Janet E.
    Pathak, Jyotishman
    Bielinski, Suzette J.
    [J]. JOURNAL OF CARDIOVASCULAR TRANSLATIONAL RESEARCH, 2016, 9 (03) : 214 - 222
  • [25] Improvement in Cardiovascular Risk Prediction with Electronic Health Records
    Mindy M. Pike
    Paul A. Decker
    Nicholas B. Larson
    Jennifer L. St. Sauver
    Paul Y. Takahashi
    Véronique L. Roger
    Walter A. Rocca
    Virginia M. Miller
    Janet E. Olson
    Jyotishman Pathak
    Suzette J. Bielinski
    [J]. Journal of Cardiovascular Translational Research, 2016, 9 : 214 - 222
  • [26] Melanoma Risk Prediction with Structured Electronic Health Records
    Richter, Aaron N.
    Khoshgoftaar, Taghi M.
    [J]. ACM-BCB'18: PROCEEDINGS OF THE 2018 ACM INTERNATIONAL CONFERENCE ON BIOINFORMATICS, COMPUTATIONAL BIOLOGY, AND HEALTH INFORMATICS, 2018, : 194 - 199
  • [27] A model to predict the risk of future development of Type 2 diabetes in women with gestational diabetes
    Ioana, I. A.
    Colfer, M.
    Fenlon, M.
    Yousif, O.
    [J]. DIABETIC MEDICINE, 2016, 33 : 167 - 167
  • [28] Development of a simple tool to predict the risk of postpartum diabetes in women with gestational diabetes mellitus
    Koehler, M.
    Ziegler, A. G.
    Beyerlein, A.
    [J]. ACTA DIABETOLOGICA, 2016, 53 (03) : 433 - 437
  • [29] Development of a simple tool to predict the risk of postpartum diabetes in women with gestational diabetes mellitus
    M. Köhler
    A. G. Ziegler
    A. Beyerlein
    [J]. Acta Diabetologica, 2016, 53 : 433 - 437
  • [30] The Impact of Electronic Health Records and Teamwork on Diabetes Care Quality
    Graetz, Ilana
    Huang, Jie
    Brand, Richard
    Shortell, Stephen M.
    Rundall, Thomas G.
    Bellows, Jim
    Hsu, John
    Jaffe, Marc
    Reed, Mary E.
    [J]. AMERICAN JOURNAL OF MANAGED CARE, 2015, 21 (12): : 878 - 884