THE SPEED OF A BIASED RANDOM WALK ON A PERCOLATION CLUSTER AT HIGH DENSITY

被引:6
|
作者
Fribergh, Alexander [1 ]
机构
[1] NYU, Courant Inst Math Sci, New York, NY 10012 USA
来源
ANNALS OF PROBABILITY | 2010年 / 38卷 / 05期
关键词
Random walk in random conductances; percolation cluster; electrical networks; Kalikow; QUENCHED INVARIANCE-PRINCIPLES;
D O I
10.1214/09-AOP521
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study the speed of a biased random walk on a percolation cluster on Z(d) in function of the percolation parameter p. We obtain a first order expansion of the speed at p = 1 which proves that percolating slows down the random walk at least in the case where the drift is along a component of the lattice.
引用
收藏
页码:1717 / 1782
页数:66
相关论文
共 50 条
  • [31] Directed percolation and random walk
    Grimmett, G
    Hiemer, P
    IN AND OUT OF EQUILIBRIUM: PROBABILITY WITH A PHYSICS FLAVOR, 2002, 51 : 273 - 297
  • [32] The speed of a biased random walk on a Galton-Watson tree is analytic
    Bowditch, Adam
    Tokushige, Yuki
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2020, 25 : 1 - 11
  • [33] Spectral dimension of simple random walk on a long-range percolation cluster
    Can, V. H.
    Croydon, D. A.
    Kumagai, T.
    ELECTRONIC JOURNAL OF PROBABILITY, 2022, 27 : 1 - 37
  • [34] On the number of distinct visited sites by a random walk on the infinite cluster of the percolation model
    Rau, Clement
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 2007, 135 (01): : 135 - 169
  • [35] Random walk in a high density dynamic random environment
    den Hollander, Frank
    Kesten, Harry
    Sidoravicius, Vladas
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2014, 25 (04): : 785 - 799
  • [36] On the anisotropic walk on the supercritical percolation cluster
    Sznitman, AS
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2003, 240 (1-2) : 123 - 148
  • [37] On the Anisotropic Walk on the Supercritical Percolation Cluster
    Alain-Sol Sznitman
    Communications in Mathematical Physics, 2003, 240 : 123 - 148
  • [38] RANDOM WALK DELAYED ON PERCOLATION CLUSTERS
    Comets, Francis
    Simenhaus, Francois
    JOURNAL OF APPLIED PROBABILITY, 2008, 45 (03) : 689 - 702
  • [39] Random walk attracted by percolation clusters
    Popov, S
    Vachkovskaia, M
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2005, 10 : 263 - 272
  • [40] RANDOM-WALK ON PERCOLATION CLUSTERS
    ARGYRAKIS, P
    KOPELMAN, R
    PHYSICAL REVIEW B, 1984, 29 (01) : 511 - 514