THE SPEED OF A BIASED RANDOM WALK ON A PERCOLATION CLUSTER AT HIGH DENSITY

被引:6
|
作者
Fribergh, Alexander [1 ]
机构
[1] NYU, Courant Inst Math Sci, New York, NY 10012 USA
来源
ANNALS OF PROBABILITY | 2010年 / 38卷 / 05期
关键词
Random walk in random conductances; percolation cluster; electrical networks; Kalikow; QUENCHED INVARIANCE-PRINCIPLES;
D O I
10.1214/09-AOP521
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study the speed of a biased random walk on a percolation cluster on Z(d) in function of the percolation parameter p. We obtain a first order expansion of the speed at p = 1 which proves that percolating slows down the random walk at least in the case where the drift is along a component of the lattice.
引用
收藏
页码:1717 / 1782
页数:66
相关论文
共 50 条