Bayesian and neural networks for geographic information processing

被引:13
|
作者
Stassopoulou, A [1 ]
Petrou, M [1 ]
Kittler, J [1 ]
机构
[1] UNIV SURREY,DEPT ELECT & ELECT ENGN,GUILDFORD GU2 5XH,SURREY,ENGLAND
基金
英国工程与自然科学研究理事会;
关键词
Bayesian networks; neural networks; conditional probability matrices; geographic information processing; desertification;
D O I
10.1016/S0167-8655(96)00089-X
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we study the problem of obtaining a correspondence between Bayesian networks and neural networks. It is shown how such a correspondence is established by obtaining a mathematical function which relates the parameters of the two models. We show the validity of our method by deriving the parameters to be used in a Bayesian network constructed to combine GIS data for assessing the risk of desertification of burned forest areas in the Mediterranean region.
引用
收藏
页码:1325 / 1330
页数:6
相关论文
共 50 条
  • [31] Neural synchrony in cortical networks: mechanisms and implications for neural information processing and coding
    Gansel, Kai S. S.
    FRONTIERS IN INTEGRATIVE NEUROSCIENCE, 2022, 16
  • [32] INFORMATION-PROCESSING IN 3-STATE NEURAL NETWORKS
    MEUNIER, C
    HANSEL, D
    VERGA, A
    JOURNAL OF STATISTICAL PHYSICS, 1989, 55 (5-6) : 859 - 901
  • [33] The special ways of application of neural networks for medical information processing
    Melnykova, Nataliia
    Mukalov, Pavlo
    Koziy, Dmytro
    2018 IEEE 13TH INTERNATIONAL SCIENTIFIC AND TECHNICAL CONFERENCE ON COMPUTER SCIENCES AND INFORMATION TECHNOLOGIES (CSIT), VOL 1, 2018, : 428 - 431
  • [34] Introduction to spiking neural networks: Information processing, learning and applications
    Ponulak, Filip
    Kasinski, Andrzej
    ACTA NEUROBIOLOGIAE EXPERIMENTALIS, 2011, 71 (04) : 409 - 433
  • [35] Continuous information representation and processing in natural and artificial neural networks
    MacLennan, BJ
    PROCEEDINGS OF THE 6TH JOINT CONFERENCE ON INFORMATION SCIENCES, 2002, : 561 - 565
  • [36] HIERARCHICAL SENSORY INFORMATION-PROCESSING MODEL WITH NEURAL NETWORKS
    KIMOTO, T
    MASUMOTO, D
    YAMAKAWA, H
    NAGATA, S
    ADVANCED ROBOTICS, 1994, 8 (03) : 285 - 301
  • [37] NONLINEAR NEURAL NETWORKS .2. INFORMATION-PROCESSING
    VANHEMMEN, JL
    GRENSING, D
    HUBER, A
    KUHN, R
    JOURNAL OF STATISTICAL PHYSICS, 1988, 50 (1-2) : 259 - 293
  • [38] Information processing using dynamical chaos: Neural networks implementation
    Andreyev, YV
    Belsky, YL
    Dmitriev, AS
    Kuminov, DA
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 1996, 7 (02): : 290 - 299
  • [39] Information processing using dynamical chaos: neural networks implementation
    Russian Acad of Sciences, Moscow, Russia
    IEEE Trans Neural Networks, 2 (290-299):
  • [40] Beyond-local neural information processing in neuronal networks
    Balkenhol, Johannes
    Haendel, Barbara
    Biswas, Sounak
    Grohmann, Johannes
    Kistowski, Joakim, V
    Prada, Juan
    Bosman, Conrado A.
    Ehrenreich, Hannelore
    Wojcik, Sonja M.
    Kounev, Samuel
    Blum, Robert
    Dandekar, Thomas
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2024, 23 : 4288 - 4305