Bayesian and neural networks for geographic information processing

被引:13
|
作者
Stassopoulou, A [1 ]
Petrou, M [1 ]
Kittler, J [1 ]
机构
[1] UNIV SURREY,DEPT ELECT & ELECT ENGN,GUILDFORD GU2 5XH,SURREY,ENGLAND
基金
英国工程与自然科学研究理事会;
关键词
Bayesian networks; neural networks; conditional probability matrices; geographic information processing; desertification;
D O I
10.1016/S0167-8655(96)00089-X
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we study the problem of obtaining a correspondence between Bayesian networks and neural networks. It is shown how such a correspondence is established by obtaining a mathematical function which relates the parameters of the two models. We show the validity of our method by deriving the parameters to be used in a Bayesian network constructed to combine GIS data for assessing the risk of desertification of burned forest areas in the Mediterranean region.
引用
收藏
页码:1325 / 1330
页数:6
相关论文
共 50 条
  • [21] Advances in Neural Networks, Intelligent Control and Information Processing
    Liu, Qingshan
    Zeng, Zhigang
    Wang, Jun
    NEUROCOMPUTING, 2016, 198 : 1 - 3
  • [22] Investigation of a class of neural networks with pipeline information processing
    Lopin, VN
    AUTOMATIC CONTROL AND COMPUTER SCIENCES, 1999, 33 (05) : 66 - 69
  • [23] A quantum theoretical approach to information processing in neural networks
    da Fonseca, JB
    da Fonseca, IB
    Araujo, CPS
    da Fonseca, JS
    COMPUTING ANTICIPATORY SYSTEMS, 2000, 517 : 330 - 344
  • [24] Evolving spiking neural networks for audiovisual information processing
    Wysoski, Simei Gomes
    Benuskova, Lubica
    Kasabov, Nikola
    NEURAL NETWORKS, 2010, 23 (07) : 819 - 835
  • [25] Information Processing in Neural Networks with the Complex Dynamic Thresholds
    Kirillov, S. Yu
    Nekorkin, V., I
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2015 (ICNAAM-2015), 2016, 1738
  • [26] Processing of Neural System Information with the Use of Artificial Spiking Neural Networks
    Lisovskaya, Angelina
    Skripnik, Tatiana N.
    PROCEEDINGS OF THE 2019 IEEE CONFERENCE OF RUSSIAN YOUNG RESEARCHERS IN ELECTRICAL AND ELECTRONIC ENGINEERING (EICONRUS), 2019, : 1183 - 1186
  • [27] Ontologies for geographic information processing
    Visser, U
    Stuckenschmidt, H
    Schuster, G
    Vögele, T
    COMPUTERS & GEOSCIENCES, 2002, 28 (01) : 103 - 117
  • [28] BAYESIAN NEURAL NETWORKS
    KONONENKO, I
    BIOLOGICAL CYBERNETICS, 1989, 61 (05) : 361 - 370
  • [29] A novel Bayesian learning method for information aggregation in modular neural networks
    Wang, Pan
    Xu, Lida
    Zhou, Shang-Ming
    Fan, Zhun
    Li, Youfeng
    Feng, Shan
    EXPERT SYSTEMS WITH APPLICATIONS, 2010, 37 (02) : 1071 - 1074
  • [30] The equivalence of Bayesian multi-sensor information fusion and neural networks
    Aarabi, P
    SENSOR FUSION: ARCHITECTURES, ALGORITHMS AND APPLICATIONS V, 2001, 4385 : 67 - 76