String fluid dynamical models in the Einstein-Cartan theory

被引:3
|
作者
Smalley, LL [1 ]
Krisch, JP
机构
[1] Univ Alabama, Dept Phys, Huntsville, AL 35899 USA
[2] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA
关键词
D O I
10.1088/0264-9381/16/3/027
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Using the general, energy-momentum tensor for a dynamical, string fluid developed from the Ray-Hilbert variational principle, physically motivated applications to Riemann-Cartan spacetime are given within the framework of the Einstein-Cartan theory. The string density is considered for the cases when it is or is not a thermodynamical variable of the fluid. Solutions are given for both cases and compared with other models in both general relativity and the Einstein-Cartan theory. The use of a string fluid as a contributer to galactic halo density is also discussed.
引用
收藏
页码:1011 / 1019
页数:9
相关论文
共 50 条
  • [21] Emergent scenario in the Einstein-Cartan theory
    Huang, Qihong
    Wu, Puxun
    Yu, Hongwei
    [J]. PHYSICAL REVIEW D, 2015, 91 (10):
  • [22] Stability of the Einstein static universe in Einstein-Cartan theory
    Atazadeh, K.
    [J]. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2014, (06):
  • [23] SOME EXACT SOLUTIONS OF CHARGED FLUID SPHERES IN EINSTEIN-CARTAN THEORY
    SINGH, T
    YADAV, RBS
    [J]. ACTA PHYSICA POLONICA B, 1978, 9 (10): : 831 - 836
  • [24] STATIC HOMOGENEOUS UNIVERSES IN EINSTEIN-CARTAN THEORY
    EFREMOV, AP
    [J]. IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII FIZIKA, 1977, (03): : 147 - 148
  • [25] INTEGRABLE COSMOLOGICAL MODELS IN THE EINSTEIN-CARTAN THEORY WITH TWO SOURCES OF TORSION
    Galiakhmetov, A. M.
    [J]. UKRAINIAN JOURNAL OF PHYSICS, 2005, 50 (07): : 643 - 648
  • [26] A study of global monopole in Einstein-Cartan theory
    Rahaman, F
    Mondal, R
    [J]. ASTROPHYSICS AND SPACE SCIENCE, 2005, 299 (02) : 167 - 174
  • [27] MATCHING CONDITIONS IN EINSTEIN-CARTAN THEORY OF GRAVITATION
    ARKUSZEWSKI, W
    KOPCZYNSKI, W
    PONOMARIEV, VN
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1975, 45 (02) : 183 - 190
  • [28] Quantum Regge Calculus of Einstein-Cartan theory
    Xue, She-Sheng
    [J]. PHYSICS LETTERS B, 2009, 682 (03) : 300 - 304
  • [29] Quantum Einstein-Cartan theory with the Holst term
    Shapiro, Ilya L.
    Teixeira, Poliane M.
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2014, 31 (18)
  • [30] RECENT ADVANCES IN EINSTEIN-CARTAN THEORY OF GRAVITY
    TRAUTMAN, A
    [J]. ANNALS OF THE NEW YORK ACADEMY OF SCIENCES, 1975, 262 (OCT15) : 241 - 245