Quantum Regge Calculus of Einstein-Cartan theory

被引:18
|
作者
Xue, She-Sheng [1 ]
机构
[1] ICRANeT, I-65122 Pescara, Italy
关键词
LATTICE FORMULATION; GENERAL-RELATIVITY; GRAVITY; VARIABLES; NEUTRINOS; POINCARE; FERMIONS; ABSENCE;
D O I
10.1016/j.physletb.2009.10.082
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We study the Quantum Regge Calculus of Einstein-Cartan theory to describe quantum dynamics of Euclidean space-time discretized as a 4-simplices complex. Tetrad field e(mu)(x) and spin-connection field omega(mu)(x) are assigned to each 1-simplex. Applying the torsion-free Cartan structure equation to each 2-simplex, we discuss parallel transports and construct a diffeomorphism and local gauge-invariant Einstein-Cartan action. Invariant holonomies of tetrad and spin-connection fields along large loops are also given. Quantization is defined by a bounded partition function with the measure of SO(4)-group valued omega(mu)(x) fields and Dirac-matrix valued e(mu)(x) fields over 4-simplices complex. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:300 / 304
页数:5
相关论文
共 50 条
  • [1] Detailed discussions and calculations of quantum Regge calculus of Einstein-Cartan theory
    Xue, She-Sheng
    [J]. PHYSICAL REVIEW D, 2010, 82 (06)
  • [2] Quantum Einstein-Cartan theory with the Holst term
    Shapiro, Ilya L.
    Teixeira, Poliane M.
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2014, 31 (18)
  • [3] Einstein-Cartan calculus for exceptional geometry
    Hadi Godazgar
    Mahdi Godazgar
    Hermann Nicolai
    [J]. Journal of High Energy Physics, 2014
  • [4] Einstein-Cartan calculus for exceptional geometry
    Godazgar, Hadi
    Godazgar, Mahdi
    Nicolai, Hermann
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2014, (06):
  • [5] Signature of Einstein-Cartan theory
    Costa, Bruno Arderucio
    Bonder, Yuri
    [J]. PHYSICS LETTERS B, 2024, 849
  • [6] LINEARIZED EINSTEIN-CARTAN THEORY
    ARKUSZEWSKI, W
    KOPCZYNSKI, W
    PONOMARIEV, VN
    [J]. ANNALES DE L INSTITUT HENRI POINCARE SECTION A PHYSIQUE THEORIQUE, 1974, 21 (01): : 89 - 95
  • [7] Energy problem in the Einstein-Cartan theory
    Polishchuk, R. F.
    [J]. GRAVITATION & COSMOLOGY, 2015, 21 (03): : 220 - 235
  • [8] Global string in Einstein-Cartan theory
    Rahaman, F
    Hossain, ST
    Mukherji, R
    Maity, K
    Mal, S
    [J]. NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-BASIC TOPICS IN PHYSICS, 2004, 119 (02): : 117 - 122
  • [9] The phase structure of Einstein-Cartan theory
    Xue, She-Sheng
    [J]. PHYSICS LETTERS B, 2008, 665 (01) : 54 - 57
  • [10] Emergent cosmos in Einstein-Cartan theory
    Hadi, H.
    Heydarzade, Y.
    Hashemi, M.
    Darabi, F.
    [J]. EUROPEAN PHYSICAL JOURNAL C, 2018, 78 (01):