Electric Field Effects in Electrochemical CO2 Reduction

被引:487
|
作者
Chen, Leanne D. [1 ,2 ]
Urushihara, Makoto [1 ,3 ]
Chan, Karen [1 ,2 ]
Norskov, Jens K. [1 ,2 ]
机构
[1] Stanford Univ, Dept Chem Engn, SUNCAT Ctr Interface Sci & Catalysis, Stanford, CA 94305 USA
[2] SLAC Natl Accelerator Lab, SUNCAT Ctr Interface Sci & Catalysis, Menlo Pk, CA 94025 USA
[3] Mitsubishi Mat Corp, Cent Res Inst, 1002-14 Mukohyama, Naka, Ibaraki 3110102, Japan
来源
ACS CATALYSIS | 2016年 / 6卷 / 10期
基金
加拿大自然科学与工程研究理事会;
关键词
CO2; reduction; field effects; density functional theory; CARBON-DIOXIDE; THEORETICAL INSIGHTS; OXYGEN REDUCTION; ADSORPTION; TRANSITION; CONVERSION; POTASSIUM; ELECTROREDUCTION; POTENTIALS; PROMOTION;
D O I
10.1021/acscatal.6b02299
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Electrochemical reduction of CO2 has the potential to reduce greenhouse gas emissions while providing energy storage and producing chemical feedstocks. A mechanistic understanding of the process is crucial to the discovery of efficient catalysts, and an atomistic description of the electrochemical interface is a major challenge due to its complexity. Here, we examine the CO2 -> CO electrocatalytic pathway on Ag(111) using density functional theory (DFT) calculations and an explicit model of the electrochemical interface. We show that the electric field from solvated cations in the double layer and their corresponding image charges on the metal surface significantly stabilizes key intermediates ->*CO2 and *COOH. At the field-stabilized sites, the formation of *CO is rate-determining. We present a microkinetic model that incorporates field effects and electrochemical barriers from ab initio calculations. The computed polarization curves show reasonable agreement with experiment without fitting any parameters.
引用
收藏
页码:7133 / 7139
页数:7
相关论文
共 50 条
  • [41] Ionic liquids for CO2 electrochemical reduction
    Fangfang Li
    Francesca Mocci
    Xiangping Zhang
    Xiaoyan Ji
    Aatto Laaksonen
    ChineseJournalofChemicalEngineering, 2021, 31 (03) : 75 - 93
  • [42] LCA of electrochemical reduction of CO2 to ethylene
    Khoo, Hsien H.
    Halim, Iskandar
    Handoko, Albertus D.
    JOURNAL OF CO2 UTILIZATION, 2020, 41
  • [43] Multiscale modeling of the electrochemical reduction of CO2
    Bell, Alexis
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 255
  • [44] Reticular materials for electrochemical reduction of CO2
    Huang, Xiaofeng
    Zhang, Yue-Biao
    COORDINATION CHEMISTRY REVIEWS, 2021, 427
  • [45] Molecular tuning for electrochemical CO2 reduction
    Zhang, Jincheng
    Ding, Jie
    Liu, Yuhang
    Su, Chenliang
    Yang, Hongbin
    Huang, Yanqiang
    Liu, Bin
    JOULE, 2023, 7 (08) : 1700 - 1744
  • [46] Electrochemical reduction of CO2 at metallic electrodes
    Augustynski, J
    Kedzierzawski, P
    Jermann, B
    ADVANCES IN CHEMICAL CONVERSIONS FOR MITIGATING CARBON DIOXIDE, 1998, 114 : 107 - 116
  • [47] Recent advances in electrochemical reduction of CO2
    Zhang, Fengtao
    Zhang, Hongye
    Liu, Zhimin
    CURRENT OPINION IN GREEN AND SUSTAINABLE CHEMISTRY, 2019, 16 : 77 - 84
  • [48] Modulating electrochemical CO2 reduction at interfaces
    Zhang, Jie
    Pan, Binbin
    Li, Yanguang
    SCIENCE BULLETIN, 2022, 67 (18) : 1844 - 1848
  • [49] Modeling Operando Electrochemical CO2 Reduction
    Dattila, Federico
    Seemakurthi, Ranga Rohit
    Zhou, Yecheng
    Lopez, Nuria
    CHEMICAL REVIEWS, 2022, 122 (12) : 11085 - 11130
  • [50] Electrochemical CO2 reduction: Predicting the selectivity
    Albrechtsen, Michael Mirabueno
    Bagger, Alexander
    CURRENT OPINION IN ELECTROCHEMISTRY, 2025, 50