Electric Field Effects in Electrochemical CO2 Reduction

被引:487
|
作者
Chen, Leanne D. [1 ,2 ]
Urushihara, Makoto [1 ,3 ]
Chan, Karen [1 ,2 ]
Norskov, Jens K. [1 ,2 ]
机构
[1] Stanford Univ, Dept Chem Engn, SUNCAT Ctr Interface Sci & Catalysis, Stanford, CA 94305 USA
[2] SLAC Natl Accelerator Lab, SUNCAT Ctr Interface Sci & Catalysis, Menlo Pk, CA 94025 USA
[3] Mitsubishi Mat Corp, Cent Res Inst, 1002-14 Mukohyama, Naka, Ibaraki 3110102, Japan
来源
ACS CATALYSIS | 2016年 / 6卷 / 10期
基金
加拿大自然科学与工程研究理事会;
关键词
CO2; reduction; field effects; density functional theory; CARBON-DIOXIDE; THEORETICAL INSIGHTS; OXYGEN REDUCTION; ADSORPTION; TRANSITION; CONVERSION; POTASSIUM; ELECTROREDUCTION; POTENTIALS; PROMOTION;
D O I
10.1021/acscatal.6b02299
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Electrochemical reduction of CO2 has the potential to reduce greenhouse gas emissions while providing energy storage and producing chemical feedstocks. A mechanistic understanding of the process is crucial to the discovery of efficient catalysts, and an atomistic description of the electrochemical interface is a major challenge due to its complexity. Here, we examine the CO2 -> CO electrocatalytic pathway on Ag(111) using density functional theory (DFT) calculations and an explicit model of the electrochemical interface. We show that the electric field from solvated cations in the double layer and their corresponding image charges on the metal surface significantly stabilizes key intermediates ->*CO2 and *COOH. At the field-stabilized sites, the formation of *CO is rate-determining. We present a microkinetic model that incorporates field effects and electrochemical barriers from ab initio calculations. The computed polarization curves show reasonable agreement with experiment without fitting any parameters.
引用
收藏
页码:7133 / 7139
页数:7
相关论文
共 50 条
  • [31] Effects of Surface Roughness on the Electrochemical Reduction of CO2 over Cu
    Jiang, Kun
    Huang, Yufeng
    Zeng, Guosong
    Toma, Francesca M.
    Goddard, William A., III
    Bell, Alexis T.
    ACS ENERGY LETTERS, 2020, 5 (04) : 1206 - 1214
  • [32] Cu nanowires for electrochemical reduction of CO2 and CO
    Raciti, David
    Wang, Chao
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 252
  • [33] A Short Perspective on Electrochemical CO2 Reduction to CO
    Tarrago, Maxime
    Ye, Shengfa
    CHIMIA, 2020, 74 (06) : 478 - 482
  • [34] Catalysts for efficient electrochemical reduction of CO2 to CO
    Kenis, Paul J. A.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 247
  • [35] Cu nanowires for electrochemical reduction of CO2 and CO
    Raciti, David
    Wang, Chao
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 251
  • [36] Superstructured metallocorroles for electrochemical CO2 reduction
    Sinha, Woormileela
    Mahammed, Atif
    Fridman, Natalia
    Diskin-Posner, Yael
    Shimon, Linda J. W.
    Gross, Zeev
    CHEMICAL COMMUNICATIONS, 2019, 55 (79) : 11912 - 11915
  • [37] Ionic liquids for CO2 electrochemical reduction
    Li, Fangfang
    Mocci, Francesca
    Zhang, Xiangping
    Ji, Xiaoyan
    Laaksonen, Aatto
    CHINESE JOURNAL OF CHEMICAL ENGINEERING, 2021, 31 : 75 - 93
  • [38] Effect of Electrolyte on the Electrochemical Reduction of CO2
    Salazar-Villalpando, Maria D.
    ELECTROCHEMISTRY OF NOVEL MATERIALS FOR ENERGY STORAGE AND CONVERSION, 2011, 33 (27): : 77 - 88
  • [39] Theoretical investigations in CO2 electrochemical reduction
    Chan, Karen
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 256
  • [40] Effect of the electrolyte on electrochemical CO2 reduction
    Chan, Karen
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 258