Treating missing data in a clinical neuropsychological dataset -: Data imputation

被引:4
|
作者
Närhi, V
Laaksonen, S
Hietala, R
Ahonen, T
Lyyti, H
机构
[1] Univ Jyvaskyla, Dept Psychol, Niilo Maki Inst, SF-40351 Jyvaskyla, Finland
[2] Stat Finland, Helsinki, Finland
[3] Univ Jyvaskyla, Child Res Ctr, Jyvaskyla, Finland
来源
CLINICAL NEUROPSYCHOLOGIST | 2001年 / 15卷 / 03期
基金
芬兰科学院;
关键词
D O I
10.1076/clin.15.3.380.10266
中图分类号
B849 [应用心理学];
学科分类号
040203 ;
摘要
Missing data frequently reduce the applicability of clinically collected data in research requiring multivariate statistics. In data imputation, missing values are replaced by predicted values obtained from models based on auxiliary information. Our aim was to complete a clinical child neuropsychological data set containing 5.2% of missing observations. This was to be used in research requiring multivariate statistics. We compared four data imputation methods by artificially deleting some data. A real-donor imputation method which preserved the parameter estimates and which predicted the observed values with acceptable accuracy was used to complete the data set. In addressing the lack of studies with regard to treatment of missing data in neuropsychological data sets, this study presents information on the outcomes of applying data imputation methods to such data. The imputation modeling described can be applied to a variety of clinical neuropsychological data sets.
引用
收藏
页码:380 / 392
页数:13
相关论文
共 50 条
  • [41] Multiple imputation: dealing with missing data
    de Goeij, Moniek C. M.
    van Diepen, Merel
    Jager, Kitty J.
    Tripepi, Giovanni
    Zoccali, Carmine
    Dekker, Friedo W.
    [J]. NEPHROLOGY DIALYSIS TRANSPLANTATION, 2013, 28 (10) : 2415 - 2420
  • [42] Multiple imputation for nonignorable missing data
    Im, Jongho
    Kim, Soeun
    [J]. JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2017, 46 (04) : 583 - 592
  • [43] Imputation of Missing Data in Industrial Databases
    Kamakshi Lakshminarayan
    Steven A. Harp
    Tariq Samad
    [J]. Applied Intelligence, 1999, 11 : 259 - 275
  • [44] gcimpute: A Package for Missing Data Imputation
    Zhao, Yuxuan
    Udell, Madeleine
    [J]. JOURNAL OF STATISTICAL SOFTWARE, 2024, 108 (04): : 1 - 27
  • [45] Missing Data Imputation Toolbox for MATLAB
    Folch-Fortuny, Abel
    Arteaga, Francisco
    Ferrer, Alberto
    [J]. CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2016, 154 : 93 - 100
  • [47] Imputation of missing ages in pedigree data
    Balise, Raymond R.
    Chen, Yu
    Dite, Gillian
    Felberg, Anna
    Sun, Limei
    Ziogas, Argyrios
    Whittemore, Alice S.
    [J]. HUMAN HEREDITY, 2007, 63 (3-4) : 168 - 174
  • [48] Evaluating the Impact of Missing Data Imputation
    Pantanowitz, Adam
    Marwala, Tshildzi
    [J]. ADVANCED DATA MINING AND APPLICATIONS, PROCEEDINGS, 2009, 5678 : 577 - 586
  • [49] Optimized parameters for missing data imputation
    Zhang, Shichao
    Qin, Yongsong
    Zhu, Xiaofeng
    Zhang, Jilian
    Zhang, Chengqi
    [J]. PRICAI 2006: TRENDS IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2006, 4099 : 1010 - 1016
  • [50] MISSING DATA, IMPUTATION AND REGRESSION TREES
    Loh, Wei-Yin
    Zhang, Qiong
    Zhang, Wenwen
    Zhou, Peigen
    [J]. STATISTICA SINICA, 2020, 30 (04) : 1697 - 1722