Sparse Linear Representation

被引:0
|
作者
Jeong, Halyun [1 ]
Kim, Young-Han [1 ]
机构
[1] Univ Calif San Diego, Dept ECE, San Diego, CA 92103 USA
关键词
RECOVERY;
D O I
10.1109/ISIT.2009.5205585
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper studies the question of how well a signal can be reprsented by a sparse linear combination of reference signals from an overcomplete dictionary. When the dictionary size is exponential in the dimension of signal, then the exact characterization of the optimal distortion is given as a function of the dictionary size exponent and the number of reference signals for the linear representation. Roughly speaking, every signal is sparse if the dictionary size is exponentially large, no matter how small the exponent is. Furthermore, an iterative method similar to matching pursuit that successively finds the best reference signal at each stage gives asymptotically optimal representations. This method is essentially equivalent to successive refinement for multiple descriptions and provides a simple alternative proof of the successive refinability of white Gaussian sources.
引用
收藏
页码:329 / 333
页数:5
相关论文
共 50 条
  • [21] NON-LINEAR LOW-RANK AND SPARSE REPRESENTATION FOR HYPERSPECTRAL IMAGE ANALYSIS
    de Morsier, Frank
    Tuia, Devis
    Borgeaud, Maurice
    Gass, Volker
    Thiran, Jean-Philippe
    2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2014,
  • [22] Real-Valued Sparse Representation Method for DOA Estimation with Uniform Linear Array
    Dai Jisheng
    Wu Zhen
    Tang Zheng
    PROCEEDINGS OF THE 31ST CHINESE CONTROL CONFERENCE, 2012, : 3794 - 3797
  • [23] Two Directional Transform based Sparse Representation: A Novel Idea and Method for Sparse Representation
    Du, Yong
    Zheng, Shupeng
    Wang, Junqian
    Wang, Yu
    Ran, Deyi
    PROCEEDINGS OF 2015 INTERNATIONAL CONFERENCE ON FLUID POWER AND MECHATRONICS - FPM 2015, 2015, : 1145 - 1147
  • [24] Ways to sparse representation:An overview
    YANG JingYu
    Science China(Information Sciences), 2009, (04) : 695 - 703
  • [25] Sparse Representation for Vehicle Recognition
    Monnig, Nathan D.
    Sakla, Wesam
    AUTOMATIC TARGET RECOGNITION XXIV, 2014, 9090
  • [26] On sparse representation in pairs of bases
    Feuer, A
    Nemirovski, A
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2003, 49 (06) : 1579 - 1581
  • [27] Sparse representation for cyclotomic fields
    Fieker, Claus
    EXPERIMENTAL MATHEMATICS, 2007, 16 (04) : 493 - 500
  • [28] Sparse Representation Shape Models
    Li, Yuelong
    Feng, Jufu
    Meng, Li
    Wu, Jigang
    JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2014, 48 (01) : 83 - 91
  • [29] A New Framework for Sparse Representation
    Li, Weijun
    Shi, Min
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2013, 41 (11): : 163 - 173
  • [30] A sparse representation for function approximation
    Poggio, T
    Girosi, F
    NEURAL COMPUTATION, 1998, 10 (06) : 1445 - 1454