Within family Mendelian randomization studies

被引:86
|
作者
Davies, Neil M. [1 ,2 ]
Howe, Laurence J. [1 ,2 ]
Brumpton, Ben [1 ,3 ,4 ]
Havdahl, Alexandra [1 ,5 ,6 ]
Evans, David M. [1 ,7 ]
Smith, George Davey [1 ,2 ]
机构
[1] Univ Bristol, Integrat Epidemiol Unit, MRC, Bristol BS8 2BN, Avon, England
[2] Univ Bristol, Bristol Med Sch, Populat Hlth Sci, Barley House, Bristol BS8 2BN, Avon, England
[3] Norwegian Univ Sci & Technol, Dept Publ Hlth & Nursing, KG Jebsen Ctr Genet Epidemiol, NTNU, Trondheim, Norway
[4] Trondheim Reg & Univ Hosp, St Olavs Hosp, Clin Thorac & Occupat Med, Trondheim, Norway
[5] Lovisenberg Diaconal Hosp, Nic Waals Inst, Oslo, Norway
[6] Norwegian Inst Publ Hlth, Dept Mental Disorders, Oslo, Norway
[7] Univ Queensland, Univ Queensland Diamantina Inst, Brisbane, Qld 4102, Australia
基金
英国医学研究理事会;
关键词
TRANSMISSION DISTORTION; COHORT PROFILE; MENTAL-HEALTH; ASSOCIATION; CHILD; DISEQUILIBRIUM; LINKAGE; TRAITS; COMMON; POWER;
D O I
10.1093/hmg/ddz204
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Mendelian randomization (MR) is increasingly used to make causal inferences in a wide range of fields, from drug development to etiologic studies. Causal inference in MR is possible because of the process of genetic inheritance from parents to offspring. Specifically, at gamete formation and conception, meiosis ensures random allocation to the offspring of one allele from each parent at each locus, and these are unrelated to most of the other inherited genetic variants. To date, most MR studies have used data from unrelated individuals. These studies assume that genotypes are independent of the environment across a sample of unrelated individuals, conditional on covariates. Here we describe potential sources of bias, such as transmission ratio distortion, selection bias, population stratification, dynastic effects and assortative mating that can induce spurious or biased SNP-phenotype associations. We explain how studies of related individuals such as sibling pairs or parent-offspring trios can be used to overcome some of these sources of bias, to provide potentially more reliable evidence regarding causal processes. The increasing availability of data from related individuals in large cohort studies presents an opportunity to both overcome some of these biases and also to evaluate familial environmental effects.
引用
收藏
页码:R170 / R179
页数:10
相关论文
共 50 条
  • [21] Mendelian randomization
    [J]. Nature Reviews Methods Primers, 2 (1):
  • [22] Mendelian randomization
    Eleanor Sanderson
    M. Maria Glymour
    Michael V. Holmes
    Hyunseung Kang
    Jean Morrison
    Marcus R. Munafò
    Tom Palmer
    C. Mary Schooling
    Chris Wallace
    Qingyuan Zhao
    George Davey Smith
    [J]. Nature Reviews Methods Primers, 2
  • [23] Mendelian Randomization
    Birney, Ewan
    [J]. COLD SPRING HARBOR PERSPECTIVES IN MEDICINE, 2022, 12 (04):
  • [24] Mendelian Randomization
    Emdin, Connor A.
    Khera, Amit V.
    Kathiresan, Sekar
    [J]. JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2017, 318 (19): : 1925 - 1926
  • [25] Mendelian randomization
    Sanderson, Eleanor
    Glymour, M. Maria
    Holmes, Michael V.
    Kang, Hyunseung
    Morrison, Jean
    Munafo, Marcus R.
    Palmer, Tom
    Schooling, C. Mary
    Wallace, Chris
    Zhao, Qingyuan
    Smith, George Davey
    [J]. NATURE REVIEWS METHODS PRIMERS, 2022, 2 (01):
  • [26] Avoiding dynastic, assortative mating, and population stratification biases in Mendelian randomization through within-family analyses
    Brumpton, Ben
    Sanderson, Eleanor
    Heilbron, Karl
    Hartwig, Fernando Pires
    Harrison, Sean
    Vie, Gunnhild Aberge
    Cho, Yoonsu
    Howe, Laura D.
    Hughes, Amanda
    Boomsma, Dorret I.
    Havdahl, Alexandra
    Hopper, John
    Neale, Michael
    Nivard, Michel G.
    Pedersen, Nancy L.
    Reynolds, Chandra A.
    Tucker-Drob, Elliot M.
    Grotzinger, Andrew
    Howe, Laurence
    Morris, Tim
    Li, Shuai
    Auton, Adam
    Windmeijer, Frank
    Chen, Wei-Min
    Bjorngaard, Johan Hakon
    Hveem, Kristian
    Willer, Cristen
    Evans, David M.
    Kaprio, Jaakko
    Smith, George Davey
    Asvold, Bjorn Olav
    Hemani, Gibran
    Davies, Neil M.
    [J]. NATURE COMMUNICATIONS, 2020, 11 (01)
  • [27] Avoiding dynastic, assortative mating, and population stratification biases in Mendelian randomization through within-family analyses
    Ben Brumpton
    Eleanor Sanderson
    Karl Heilbron
    Fernando Pires Hartwig
    Sean Harrison
    Gunnhild Åberge Vie
    Yoonsu Cho
    Laura D. Howe
    Amanda Hughes
    Dorret I. Boomsma
    Alexandra Havdahl
    John Hopper
    Michael Neale
    Michel G. Nivard
    Nancy L. Pedersen
    Chandra A. Reynolds
    Elliot M. Tucker-Drob
    Andrew Grotzinger
    Laurence Howe
    Tim Morris
    Shuai Li
    Adam Auton
    Frank Windmeijer
    Wei-Min Chen
    Johan Håkon Bjørngaard
    Kristian Hveem
    Cristen Willer
    David M. Evans
    Jaakko Kaprio
    George Davey Smith
    Bjørn Olav Åsvold
    Gibran Hemani
    Neil M. Davies
    [J]. Nature Communications, 11
  • [28] Mendelian Randomization: Present and Future of Epidemiological Studies in Cardiology
    Iturrieta-Zuazo, Ignacio
    Walter, Stefan
    [J]. REVISTA ESPANOLA DE CARDIOLOGIA, 2015, 68 (02): : 87 - 91
  • [29] Systematic review of Mendelian randomization studies on risk of cancer
    Georgios Markozannes
    Afroditi Kanellopoulou
    Olympia Dimopoulou
    Dimitrios Kosmidis
    Xiaomeng Zhang
    Lijuan Wang
    Evropi Theodoratou
    Dipender Gill
    Stephen Burgess
    Konstantinos K. Tsilidis
    [J]. BMC Medicine, 20
  • [30] Review of mendelian randomization studies on age at natural menopause
    Zhang, Xiao
    Huangfu, Zhao
    Wang, Shaowei
    [J]. FRONTIERS IN ENDOCRINOLOGY, 2023, 14