Deep Encoder-Decoder Networks for Mapping Raw Images to Dynamic Movement Primitives

被引:0
|
作者
Pahic, Rok [1 ,2 ]
Gams, Andrej [1 ]
Ude, Ales [1 ,2 ]
Morimoto, Jun [2 ]
机构
[1] Jozef Stefan Inst, Dept Automat Biocybernet & Robot, Ljubljana, Slovenia
[2] ATR Computat Neurosci Labs, Kyoto, Japan
基金
欧盟地平线“2020”;
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we propose a new approach for learning perception-action couplings. We show that by collecting a suitable set of raw images and the associated movement trajectories, a deep encoder-decoder network can be trained that takes raw images as input and outputs the corresponding dynamic movement primitives. We propose suitable cost functions for training the network and describe how to calculate their gradients to enable effective training by back-propagation. We tested the proposed approach both on a synthetic dataset and on a widely used MNIST database to generate handwriting movements from raw images of digits. The calculated movements were also applied for digit writing with a real robot.
引用
收藏
页码:5863 / 5868
页数:6
相关论文
共 50 条
  • [31] Deep Hierarchical Encoder-Decoder Network for Image Captioning
    Xiao, Xinyu
    Wang, Lingfeng
    Ding, Kun
    Xiang, Shiming
    Pan, Chunhong
    [J]. IEEE TRANSACTIONS ON MULTIMEDIA, 2019, 21 (11) : 2942 - 2956
  • [32] Optimized deep encoder-decoder methods for crack segmentation
    Konig, Jacob
    Jenkins, Mark David
    Mannion, Mike
    Barrie, Peter
    Morison, Gordon
    [J]. DIGITAL SIGNAL PROCESSING, 2021, 108
  • [33] Deep Convolutional Encoder-Decoder for Myelin and Axon Segmentation
    Mesbah, Rassoul
    McCane, Brendan
    Mills, Steven
    [J]. PROCEEDINGS OF THE 2016 INTERNATIONAL CONFERENCE ON IMAGE AND VISION COMPUTING NEW ZEALAND (IVCNZ), 2016, : 226 - 231
  • [34] RESIDUAL ENCODER-DECODER NETWORK FOR DEEP SUBSPACE CLUSTERING
    Yang, Shuai
    Zhu, Wenqi
    Zhu, Yuesheng
    [J]. 2020 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2020, : 2895 - 2899
  • [35] Encoder-Decoder Networks for Analyzing Thermal and Power Delivery Networks
    Chhabria, Vidya A.
    Ahuja, Vipul
    Prabhu, Ashwath
    Patil, Nikhil
    Jain, Palkesh
    Sapatnekar, Sachin S.
    [J]. ACM TRANSACTIONS ON DESIGN AUTOMATION OF ELECTRONIC SYSTEMS, 2023, 28 (01)
  • [36] Light field intrinsics with a deep encoder-decoder network
    Alperovich, Anna
    Johannsen, Ole
    Strecke, Michael
    Goldluecke, Bastian
    [J]. 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 9145 - 9154
  • [37] Compressive MRI quantification using convex spatiotemporal priors and deep encoder-decoder networks
    Golbabaee, Mohammad
    Buonincontri, Guido
    Pirkl, Carolin M.
    Menzel, Marion, I
    Menze, Bjoern H.
    Davies, Mike
    Gomez, Pedro A.
    [J]. MEDICAL IMAGE ANALYSIS, 2021, 69
  • [38] Cascaded deep convolutional encoder-decoder neural networks for efficient liver tumor segmentation
    Budak, Umit
    Guo, Yanhui
    Tanyildizi, Erkan
    Sengur, Abdulkadir
    [J]. MEDICAL HYPOTHESES, 2020, 134
  • [39] MRI Brain Tumor Segmentation Using Deep Encoder-Decoder Convolutional Neural Networks
    Yan, Benjamin B.
    Wei, Yujia
    Jagtap, Jaidip Manikrao M.
    Moassefi, Mana
    Garcia, Diana V. Vera
    Singh, Yashbir
    Vahdati, Sanaz
    Faghani, Shahriar
    Erickson, Bradley J.
    Conte, Gian Marco
    [J]. BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2021, PT II, 2022, 12963 : 80 - 89
  • [40] Unsupervised Feature Selection using Encoder-Decoder Networks
    SharifiPour, Sasan
    Fayyazi, Hossein
    Sabokro, Mohammad
    [J]. 2020 6TH IRANIAN CONFERENCE ON SIGNAL PROCESSING AND INTELLIGENT SYSTEMS (ICSPIS), 2020,