Deep Encoder-Decoder Networks for Mapping Raw Images to Dynamic Movement Primitives

被引:0
|
作者
Pahic, Rok [1 ,2 ]
Gams, Andrej [1 ]
Ude, Ales [1 ,2 ]
Morimoto, Jun [2 ]
机构
[1] Jozef Stefan Inst, Dept Automat Biocybernet & Robot, Ljubljana, Slovenia
[2] ATR Computat Neurosci Labs, Kyoto, Japan
基金
欧盟地平线“2020”;
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we propose a new approach for learning perception-action couplings. We show that by collecting a suitable set of raw images and the associated movement trajectories, a deep encoder-decoder network can be trained that takes raw images as input and outputs the corresponding dynamic movement primitives. We propose suitable cost functions for training the network and describe how to calculate their gradients to enable effective training by back-propagation. We tested the proposed approach both on a synthetic dataset and on a widely used MNIST database to generate handwriting movements from raw images of digits. The calculated movements were also applied for digit writing with a real robot.
引用
收藏
页码:5863 / 5868
页数:6
相关论文
共 50 条
  • [1] A Lightweight Encoder-Decoder Path for Deep Residual Networks
    Jin, Xin
    Xie, Yanping
    Wei, Xiu-Shen
    Zhao, Bo-Rui
    Zhang, Yongshun
    Tan, Xiaoyang
    Yu, Yang
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2022, 33 (02) : 866 - 878
  • [2] EEG Channel Interpolation Using Deep Encoder-decoder Networks
    Saba-Sadiya, Sari
    Alhanai, Tuka
    Liu, Taosheng
    Ghassemi, Mohammad M.
    [J]. 2020 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE, 2020, : 2432 - 2439
  • [3] Deep encoder-decoder networks for belt longitudinal tear detection
    You, Lei
    Luo, Minghua
    Zhu, Xinglin
    Zhou, Bin
    [J]. MEASUREMENT & CONTROL, 2024,
  • [4] Cloud and Snow Segmentation in Satellite Images Using an Encoder-Decoder Deep Convolutional Neural Networks
    Zheng, Kai
    Li, Jiansheng
    Ding, Lei
    Yang, Jianfeng
    Zhang, Xucheng
    Zhang, Xun
    [J]. ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2021, 10 (07)
  • [5] Interpretable Transformations with Encoder-Decoder Networks
    Worrall, Daniel E.
    Garbin, Stephan J.
    Turmukhambetov, Daniyar
    Brostow, Gabriel J.
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, : 5737 - 5746
  • [6] Deep Convolutional Encoder-Decoder Networks for Uncertainty Quantification of Dynamic Multiphase Flow in Heterogeneous Media
    Mo, Shaoxing
    Zhu, Yinhao
    Zabaras, Nicholas
    Shi, Xiaoqing
    Wu, Jichun
    [J]. WATER RESOURCES RESEARCH, 2019, 55 (01) : 703 - 728
  • [7] A DEEP ENCODER-DECODER NETWORKS FOR JOINT DEBLURRING AND SUPER-RESOLUTION
    Zhang, Xinyi
    Wang, Fei
    Dong, Hang
    Guo, Yu
    [J]. 2018 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2018, : 1448 - 1452
  • [8] Development of Secure Encoder-Decoder for JPEG Images
    Hamissa, Ghada
    Abd Elkader, Hatem
    Sarhan, Amany
    Fahmy, Mahmoud
    [J]. ICCES'2010: THE 2010 INTERNATIONAL CONFERENCE ON COMPUTER ENGINEERING & SYSTEMS, 2010, : 189 - 194
  • [9] Deep Residual Encoder-Decoder Networks for Desert Seismic Noise Suppression
    Ma, Haitao
    Yao, Haiyang
    Li, Yue
    Wang, Hongzhou
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2020, 17 (03) : 529 - 533
  • [10] Monocular Semantic Occupancy Grid Mapping With Convolutional Variational Encoder-Decoder Networks
    Lu, Chenyang
    van de Molengraft, Marinus Jacobus Gerardus
    Dubbelman, Gijs
    [J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2019, 4 (02) : 445 - 452